Engineering Applications of Nanotechnology (eBook)

From Energy to Drug Delivery
eBook Download: PDF
2017 | 1st ed. 2017
VI, 334 Seiten
Springer International Publishing (Verlag)
978-3-319-29761-3 (ISBN)

Lese- und Medienproben

Engineering Applications of Nanotechnology -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book focuses on the use of nanotechnology in several fields of engineering. Among others, the reader will find valuable information as to how nanotechnology can aid in extending the life of component materials exposed to corrosive atmospheres, in thermal fluid energy conversion processes, anti-reflection coatings on photovoltaic cells to yield enhanced output from solar cells, in connection with friction and wear reduction in automobiles, and buoyancy suppression in free convective heat transfer. Moreover, this unique resource presents the latest research on nanoscale transport phenomena and concludes with a look at likely future trends.


Viswanatha SHARMA Korada is working as a Professor in the Department of Mechanical Engineering, Universiti Teknologi PETRONAS since 2014. He joined the Jawaharlal Nehru Technological University Hyderabad (JNTUH), India in 1989 as a lecturer and holds the position of Professor from 2006. He has published numerous peer reviewed articles in journals dealing with thermal fluid problems having applications in the cooling of electronic components, condensation in the presence of air, nucleate boiling heat transfer, solar thermal energy conversion, flow and heat transfer in porous medium, single phase and two phase heat transfer. He has co-authored a book on 'Energy Conservation and Management'.

Nor Hisham B Hamid received his BSc degree in Electrical Electronics Engineering from the University of Rochester, New York, USA, and MSc degree in Manufacturing System Engineering from the University of Warwick, UK, in 1993 and 1994, respectively. He received his PhD degree in Electronics Engineering from the University of Edinburgh, Scotland in 2006. From 1994 to 1999, he worked in Motorola KL, Malaysia as senior product/failure analysis engineer. In 1999, he joined Universiti Teknologi PETRONAS, Malaysia where he is presently an Associate Professor in the Department of Electrical and Electronics Engineering and Director for Nanotechnology Mission Oriented Research, Universiti Teknologi PETRONAS. His research interests are in Nano-Devices Modeling, Fault-Tolerant Architectures, ME

MS, Microfluidic Lab-On-Chip, Reliability and Testing of Sensors, MEMS, and Microfluidics Systems. 

Viswanatha SHARMA Korada is working as a Professor in the Department of Mechanical Engineering, Universiti Teknologi PETRONAS since 2014. He joined the Jawaharlal Nehru Technological University Hyderabad (JNTUH), India in 1989 as a lecturer and holds the position of Professor from 2006. He has published numerous peer reviewed articles in journals dealing with thermal fluid problems having applications in the cooling of electronic components, condensation in the presence of air, nucleate boiling heat transfer, solar thermal energy conversion, flow and heat transfer in porous medium, single phase and two phase heat transfer. He has co-authored a book on "Energy Conservation and Management".Nor Hisham B Hamid received his BSc degree in Electrical Electronics Engineering from the University of Rochester, New York, USA, and MSc degree in Manufacturing System Engineering from the University of Warwick, UK, in 1993 and 1994, respectively. He received his PhD degree in Electronics Engineering from the University of Edinburgh, Scotland in 2006. From 1994 to 1999, he worked in Motorola KL, Malaysia as senior product/failure analysis engineer. In 1999, he joined Universiti Teknologi PETRONAS, Malaysia where he is presently an Associate Professor in the Department of Electrical and Electronics Engineering and Director for Nanotechnology Mission Oriented Research, Universiti Teknologi PETRONAS. His research interests are in Nano-Devices Modeling, Fault-Tolerant Architectures, MEMS, Microfluidic Lab-On-Chip, Reliability and Testing of Sensors, MEMS, and Microfluidics Systems. 

Contents 6
1 Stability of Nanofluids 8
Abstract 8
1 Introduction 10
1.1 Industrial Applications 12
2 Agglomeration in Nanofluids 14
2.1 DLVO Theory 17
2.2 Non-DLVO Forces 18
2.3 Effect of Stability on Thermal Properties 18
3 Nanofluids Preparation Methods 19
3.1 Single Step 19
3.2 Two Step 20
4 Stability Evaluation Methods 22
4.1 Electron Microscopy 22
4.1.1 SEM 22
4.1.2 TEM 23
4.2 Sedimentation Techniques 24
4.3 Spectral Analysis 25
4.4 Zeta Potential 25
4.5 Dynamic Light Scattering 26
5 Ways to Improve Stability 26
5.1 Mechanical Mixing Techniques 27
5.1.1 Ultrasonication 27
5.1.2 High-Pressure Homogenizer 28
5.1.3 Wet Milling 29
5.2 Chemical Techniques 31
5.2.1 Surfactant Addition 31
5.2.2 Surface Modification 33
5.2.3 pH Adjustment 34
6 Conclusions 34
References 35
2 Considerations on the Thermophysical Properties of Nanofluids 39
Abstract 39
1 Introduction 41
2 Viscosity Models 41
2.1 Experimental Determination of Viscosity 44
3 Nanofluid Thermal Conductivity 48
3.1 Nanofluid Thermal Conductivity, k_{{/rm nf}} Models 48
3.2 Experimental Thermal Conductivity, knf 54
3.3 k_{{/rm nf}} in Base Liquid Ethylene Glycol 56
3.4 k_{{/rm nf}} in Ethylene Glycol Water Mixtures 57
3.5 Effect of PH on Nanofluid Thermal Conductivity 59
3.6 Effect of Particle Size on k_{{/rm nf}} 59
3.7 Effect of Size on Particle Specific Heat 61
4 Nanofluid Specific Heat 63
5 Density 65
6 Results and Discussion 66
7 Conclusions 70
Acknowledgments 70
References 71
3 Heat Transfer Enhancement with Nanofluids for Automotive Cooling 77
Abstract 77
1 Introduction 78
1.1 Automotive Cooling System 80
1.2 Nanofluid Synthesis Methods 81
1.3 Nanofluid Applications 82
1.3.1 The Big Impact of Nanoparticles 82
2 Forced Convection in a Car Radiator 83
2.1 Outlook 85
3 Experimental Work 86
3.1 Nanofluid Preparation 86
3.1.1 Experimental Test Rig Setup 88
3.1.2 Experimental Procedure 90
3.1.3 Experimental Data Analysis 92
3.1.4 Uncertainty Analysis 94
4 Result and Discussion 94
4.1 Outlet Temperature 94
4.2 Heat Transfer 96
4.3 Heat Rejected 100
4.4 Heat Transfer Enhancement 103
5 Conclusions and Recommendations 104
References 106
4 Transparent Carbon Nanotubes (CNTs) as Antireflection and Self-cleaning Solar Cell Coating 107
Abstract 107
1 Introduction 107
2 Photovoltaic Properties of Carbon Nanotubes 110
3 Antireflection and Self-cleaning Coatings 110
4 Modeling and Simulation Approach for Nanolayer 111
4.1 Finite-Difference Time-Domain (FDTD) Method 112
4.1.1 Theory of FDTD 113
4.2 Transfer-Matrix Method (TMM) 114
5 Conclusions 117
Acknowledgments 117
References 118
5 Nanofluids for Enhanced Solar Thermal Energy Conversion 121
Abstract 121
1 Introduction 122
1.1 Nanofluids 123
2 Solar Collector 124
2.1 Flat Plate Solar Collector 125
2.2 Direct Absorption Solar Collector 132
2.3 Evacuated Tube Solar Collector 139
2.4 Parabolic Trough Collector 140
2.5 Concentrated–Parabolic Solar Collector 144
2.6 PV/T Collectors 146
3 Challenges of Utilizing Nanofluids 148
4 Future Directions 149
5 Conclusions 149
References 150
6 Thin Film Hydrodynamic Bearing Analysis Using Nanoparticle Additive Lubricants 155
Abstract 155
1 Three-Layered Journal Bearing Analysis Using Nanoparticle Additive Lubricants 157
1.1 Thin Film Lubrication 158
1.2 Nanoparticle Additive Lubricants 158
1.3 Nondimensional Pressure in Three-Layered Journal Bearing 159
1.4 Three-Layered Journal Bearing Analysis 160
1.4.1 Load Capacity Parameter 160
1.4.2 Coefficient of Friction 161
2 Three-Layered Journal Bearing Analysis Using Nanoparticle Additive Couple Stress Fluids 163
2.1 Couple Stress Fluids 163
2.2 Nondimensional Pressure in Couple Stress Fluid Lubricated Nanoparticle Additive Three-Layered Journal Bearing 163
2.3 Couple Stress Fluid Lubricated Nanoparticle Additive Three-Layered Journal Bearing Analysis 164
2.3.1 Load Capacity 165
2.3.2 Coefficient of Friction 165
3 Partial Slip Thin Film Lubrication with Electric Double Layer 167
3.1 Electric Double Layer 167
3.2 Slip in Fluid Film Bearing 168
3.3 Nondimensional Pressure for Partial Slip Slider Bearing with Electric Double Layer 168
3.4 Partial Slip Slider Bearing Nondimensional Load Capacity with Electric Double Layer 169
4 Thin Film Lubrication with Porous and Electric Double Layer Using CNT Additives 170
4.1 Porous-Layered Thin Film Lubrication 171
4.2 CNT Additive Fluids 172
4.3 Nondimensional Pressure for Slider Bearing with Porous and Electric Double Layer 172
4.4 Nondimensional Load Capacity of Slider Bearing with Porous and Electric Double Layer 174
5 Conclusions 175
References 177
7 Mechanism of Heat Transfer with Nanofluids for the Application in Oil Wells 180
Abstract 180
1 Introduction 181
2 Nanofluid Preparation 183
2.1 Two-Step Method 183
2.2 One-Step Method 183
2.3 Other Novel Methods 184
3 Heat Transfer in Nanofluids 185
3.1 Thermal and Heat Transfer Characteristics 185
3.2 Convective Heat Transfer 186
3.3 Boiling Heat Transfer 188
4 Mechanism of Heat Transfer in Nanofluids 189
5 Prospective Performances 190
5.1 Wellbore Instability 190
5.2 Lost Circulation 190
5.3 Pipe Sticking 191
5.4 Reduction Torque and Drag 191
5.5 Toxic Gases 191
6 Nanomaterials as Drilling Fluid: Its Challenges 192
7 Conclusion 193
References 193
8 Novel Nano Copper-Tungsten-Based EDM Electrode 198
Abstract 198
1 Electrodischarge Machining 199
2 EDM Electrodes 199
2.1 Fabrication Techniques 201
2.1.1 Powder Metallurgy (P/M) Electrodes 201
2.1.2 Rapid Prototyping (R/P) Electrodes 202
2.1.3 Ball Milling of Electrodes 203
3 EDM Theory 204
3.1 Electrodes Wear 205
3.2 Material Removal Rates 205
3.3 Surface Roughness 207
4 Nanocomposite Cu–WC–Si Electrodes 207
4.1 Synthesizing the Nanocomposite 207
4.2 Consolidation Techniques 208
4.2.1 As-Received Powder Characterization 210
4.2.2 Selection of Milling Variables 210
4.3 Experimental Designs 210
4.3.1 Taguchi Method 210
4.3.2 Milling Experiment 211
4.3.3 As-Milled Powder Characterization 212
4.3.4 Densities and Volume Measurement 213
4.3.5 Heat Conduction Measurement 214
4.3.6 Settings for Performance Measurement 214
5 Results of Testing and Analysis 215
5.1 Machining with Conventional Electrodes (Hardened Die Steel Using Cu–W Electrode) 216
5.1.1 Machining Set-up 216
5.1.2 Material Removal Rate (mg/min) 218
5.1.3 Electrode Wear (EW) 219
5.1.4 Tool Wear Ratio TWR (%) 219
5.1.5 Surface Roughness Ra (µm) 220
5.1.6 Estimated Result at Optimum Condition and Confirmation Test 220
5.2 Machining with Nanocomposite Electrode on Machining of Hardened Die Steel 223
5.2.1 Performance of Cu–WC–Si Electrode on Machining of Die Steel (Cu–WC–Si) 224
5.2.2 MRR (mg/min) Achieved by Using Cu–WC–Si Electrode at Optimal Setting 225
5.2.3 EW (mg/min) Achieved by Using Cu–WC–Si Electrode at Optimal Setting 225
5.2.4 TWR (%) of Cu–WC–Si Electrode at Optimal Setting 227
6 Conclusion 227
References 228
9 Nitriding of Duplex Stainless Steel for Reduction Corrosion and Wear 230
Abstract 230
1 Introduction 230
2 Corrosion Problems in Oil and Gas Environment 231
3 Effect of Treating Temperature on Microstructure of Steel 232
4 Possible Corrosion Type on Duplex Stainless Steel in H2S and CO2 Environment 235
5 Effect of H2S and CO2 Partial Pressure Ratio on Corrosion of DSS 236
6 Effect of Gas Composition on Surface Morphology 236
7 Possible of Increase of Surface Roughness After Nitriding 237
8 Carbide Precipitation and Its Effect 237
9 Conclusion 238
References 239
10 Thermal Spray Coatings for Hot Corrosion Resistance 240
Abstract 240
1 Introduction 241
2 Hot Corrosion 242
2.1 Physical Characteristics of Hot Corrosion 243
2.1.1 High-Temperature Hot Corrosion (HTHC) Type I 244
2.1.2 Low-Temperature Hot Corrosion (LTHC) Type II 244
2.2 Degradation of the Superalloys 245
2.2.1 The Initiation Stage 245
2.2.2 The Propagation Stage 246
3 Mechanisms of Hot Corrosion 246
3.1 Chemistry of Salts 249
3.1.1 Sulphate Chemistry 249
3.1.2 Vanadate Chemistry 249
3.2 Hot Corrosion in Liquefied Salt Atmospheres 250
3.2.1 Liquefied Salt (Na2SO4–60 %V2O5) Atmosphere-I 250
3.2.2 Liquefied Salt (Na2SO4–25 %K2SO4) Atmosphere-II 252
3.2.3 Hot Corrosion of the Nickel-Based Alloys 253
3.2.4 Hot Corrosion of Iron-Based Mixtures 256
4 Some Studies on Power Plant Environments 258
5 Preventive Measures Against Hot Corrosion 260
6 Role of Thermal Spray Coatings 261
6.1 Advantages of Thermal Spray Coatings 261
6.2 Requirement of High-Temperature Coatings 262
6.3 Coating Deposition Techniques 262
6.3.1 Thermal Spray Techniques 263
6.4 Nanostructured Coatings 264
7 Conclusions 267
References 267
11 Application of Nanotechnology in Cancer Treatment 274
Abstract 274
1 Introduction 276
1.1 Diagnosis in Cancer 281
1.2 Drawback in Current Tumour Imaging 283
2 Nanotechnology 283
2.1 Nanomaterials for Cancer 284
2.1.1 Passive Tumour Targeting 285
2.1.2 Active Tumour Targeting 285
2.2 Quantum Dots 285
2.3 Spherical Gold Nanoparticles 286
2.4 Single-Walled Carbon Nanotube (SWCNT) 287
2.5 Superparamagnetic Iron Oxide Nanoparticles (SPIONs) 287
2.6 Dendrimers 288
2.7 Liposome Nanoparticles 289
2.8 Polymer Nanoparticles 290
2.9 Micelles 290
2.10 Nanocantilevers 291
3 Application of Nanotechnology in Cancer Surgery 291
3.1 Control of Operative Blood Loss 292
3.2 Nanotechnology in Bone and Joint Surgery 292
3.3 Activated Probe and Tumour Painting 292
3.4 Nanocoated Surgical Blades 293
3.5 Nanoneedles 294
3.6 Nanotechnology in Sentinel Node Biopsy 294
4 Nanotechnology in Radiotherapy 297
4.1 Nanotechnology in Tumour Imaging for Tumour Localization 298
4.2 Use of Carbon Nanotubes for X-ray Generation 298
4.3 Nanotechnology in Radiosensitization 299
4.4 Nanomedicine for Concurrent Chemoradiotherapy 300
4.5 Nanobrachytherapy 300
4.6 Radiation Protection 300
4.7 Radiation-Induced Drug Delivery 301
4.8 NanoXray in Radiotherapy 301
5 Nanotechnology in Medical Oncology 302
5.1 Nanoparticle Albumin-Bound Paclitaxel 302
5.2 Liposomal Doxorubicin (Caelyx) 305
5.3 Pagylated Filgrastim (Neulasta) 306
5.4 Application in Gynaecological Cancers 306
5.5 Nanotechnology in Cancer of the Genital Tract 307
5.6 Non-chemotherapy Applications 308
6 Nanotechnology in Palliative Care 309
7 Nanotoxicity and Safety of Nanoparticles 309
8 Conclusions 310
References 311
12 Current Trends in the Preparation of Nanoparticles for Drug Delivery 317
Abstract 317
1 Introduction 318
2 Silica Nanoparticles and Their Role in Drug Delivery 319
3 Gold Nanoparticles and Their Role in Drug Delivery 326
4 Future Prospects of Engineered Nanoparticles in Drug Discovery 330
5 Conclusions 332
References 332

Erscheint lt. Verlag 9.1.2017
Reihe/Serie Topics in Mining, Metallurgy and Materials Engineering
Zusatzinfo VI, 334 p. 87 illus.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Schlagworte anti-reflection coatings • Cooling applications • corrosion protection • Drug Delivery • Nanoscale transport • Quantum dots • Solar cells • Thermal sciences • Wear reduction
ISBN-10 3-319-29761-9 / 3319297619
ISBN-13 978-3-319-29761-3 / 9783319297613
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 8,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Horst Kuchling; Thomas Kuchling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
24,99