Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications (eBook)

Volume 1

Ru-Shi Liu (Herausgeber)

eBook Download: PDF
2016 | 1st ed. 2017
VIII, 593 Seiten
Springer Berlin (Verlag)
978-3-662-52771-9 (ISBN)

Lese- und Medienproben

Phosphors, Up Conversion Nano Particles, Quantum Dots and Their Applications -
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book introduces readers to fundamental information on phosphor and quantum dots. It comprehensively reviews the latest research advances in and applications of fluoride phosphors, oxide phosphors, nitridosilicate phosphors and various quantum dot materials. Phosphors and phosphor-based quantum dot materials have recently gained considerable scientific interest due to their wide range of applications in lighting, displays, medical and telecommunication technologies.

This work will be of great interest to researchers and graduate students in materials sciences and chemistry who wish to learn more about the principles, synthesis and analysis of phosphors and quantum dot materials.



Professor Ru-Shi Liu is currently a professor at the Department of Chemistry, National Taiwan University.  He received his Bachelor's degree in Chemistry from Soochow University (Taiwan) in 1981, and his Master's degree in Nuclear Science from the National Tsinghua University (Taiwan) in 1983. He obtained two PhD degrees in Chemistry - one from National Tsinghua University in 1990 and one from the University of Cambridge in 1992. He worked at Materials Research Laboratories at the Industrial Technology Research Institute from 1983 to 1985. He was an Associate Professor at the Department of Chemistry of National Taiwan University from 1995 to 1999, and appointed a professor in 1999. His research focuses on the field of Materials Chemistry. He is the author or coauthor of more than 500 publications in scientific international journals, and holds more than 100 patents.

Professor Ru-Shi Liu is currently a professor at the Department of Chemistry, National Taiwan University.  He received his Bachelor’s degree in Chemistry from Soochow University (Taiwan) in 1981, and his Master’s degree in Nuclear Science from the National Tsinghua University (Taiwan) in 1983. He obtained two PhD degrees in Chemistry - one from National Tsinghua University in 1990 and one from the University of Cambridge in 1992. He worked at Materials Research Laboratories at the Industrial Technology Research Institute from 1983 to 1985. He was an Associate Professor at the Department of Chemistry of National Taiwan University from 1995 to 1999, and appointed a professor in 1999. His research focuses on the field of Materials Chemistry. He is the author or coauthor of more than 500 publications in scientific international journals, and holds more than 100 patents.

Preface 5
Contents 6
1 Introduction to the Basic Properties of Luminescent Materials 8
Abstract 8
1.1 History and Classification of LEDs 9
1.2 Fundamentals of Phosphors 12
1.2.1 Host Lattice 12
1.2.2 Activator 13
1.2.2.1 Transition-Metal Ions 13
1.2.2.2 Rare-Earth Ions (4f ? 4f Transition) 14
1.2.2.3 Rare-Earth Ions (5d ? 4f Transition) 16
1.2.3 Effect-Dependent Luminescence 17
1.2.4 Energy Transfer 18
1.2.5 Thermal Effect 19
1.2.6 Classification of Phosphors for Pc-WLEDs 21
1.3 Fundamentals of Nanomaterials 23
1.3.1 Quantum-Confinement Effect 24
1.3.2 Nucleation and Growth 25
1.3.3 II–VI, III–V, and I–III–VI Semiconducting QDs 27
1.3.3.1 Binary II–VI QDs 27
1.3.3.2 Binary III–V QDs 28
1.3.3.3 Ternary I–III–VI QDs 30
References 31
2 Phosphors for White-Light LEDs Through the Principle of Energy Transfer 37
Abstract 37
2.1 Introduction 38
2.2 Theory of Electronic Transition and Luminescence 38
2.2.1 Literature Review 42
2.3 Design Principles and Preparation Protocol of White-Emitting Phosphors 43
2.4 White-Emitting Phosphors with Predesigned Energy-Transfer Mechanisms 45
2.4.1 White-Emitting Phosphors with Energy Transfer from Eu2+ to Mn2+ 45
2.4.2 White-Emitting Phosphors with Energy Transfer from Ce3+ to Eu2+ 47
2.4.3 White-Emitting Phosphors with Energy Transfer from Ce3+ to Mn2+ [45–48] 48
2.4.4 Trichromatic White-Emitting Phosphors with Dual-Energy Transfer 49
2.5 Summary and Perspectives 56
Acknowledgments 56
References 57
3 Energy Transfer Between Luminescent Centers 60
Abstract 60
3.1 Introduction 60
3.2 Spectroscopic Evidence for Energy Transfer 61
3.3 Efficiencies of Donor Luminescence and Energy Transfer 62
3.4 Lifetimes 64
3.4.1 Excited-State Lifetime 64
3.4.2 Fluorescence Lifetime 65
3.5 Theory of Energy Transfer 65
3.5.1 Electric Multipolar Interaction 66
3.5.2 Exchange Interaction 70
3.5.3 Diffusion-Limited Energy Transfer 71
References 71
4 Principles of Energetic Structure and Excitation-Energy Transfer Based on High-Pressure Measurements 72
Abstract 72
4.1 Introduction 72
4.2 High-Pressure Generation and Equipment 74
4.2.1 Hydrostatic Pressure as Experimental Variable 74
4.2.2 High-Pressure Cells 75
4.2.3 Anvils and Gaskets 77
4.2.4 Pressure-Transmitting Media 77
4.2.5 High-Pressure Sensors 80
4.3 Fundamentals of High-Pressure Luminescence Phenomena 81
4.3.1 Pressure-Induced Shifts of the Band States 84
4.3.2 Pressure Dependence of Transition-Metal Ion Luminescence 84
4.3.2.1 Pressure Dependence of Ti3+ (3d1) Luminescence 87
4.3.2.2 High-Pressure Spectroscopy of the 3d3 and 3d2 Systems 89
4.4 Rare-Earth Ions 94
4.4.1 Pressure Dependence of 4fn–4fn Transitions 94
4.4.1.1 Ce3+ and Yb3+ 95
4.4.1.2 Pr3+ Ions 96
4.4.1.3 Nd3+ Ion 103
4.4.1.4 Eu3+, Tb3+ and Eu2+ Ions 104
4.4.1.5 Spectroscopic Evidence of Pressure-Induced Phase Transitions 105
4.5 Luminescence Related to the 4fn?15d ? 4fn Transitions in Ln3+ and Ln2+ Ions 106
4.5.1 5d ? 4f Luminescence in Ce3+ 108
4.5.2 4f5d ? 4f2 Luminescence in Pr3+ 113
4.5.3 4f6 5d ? 4f7 Luminescence in Eu2+ and 4f135d ? 4f14 Luminescence in Yb2+ 115
4.5.4 d-f Luminescence in Actinides 124
4.6 Influence of Pressure on Ionization and Charge-Transfer Transitions 124
4.6.1 Model of Impurity-Trapped Exciton States 126
4.6.2 High-Pressure Effect on an Anomalous Luminescence in Eu2+- and Yb2+-Doped Materials 130
4.6.3 Pressure-Induced Luminescence Quenching in Pr3+- and Tb3+-Doped Materials 134
4.6.4 Pressure Dependence of the Energy of CT Transitions 143
4.7 Summary 147
Acknowledgments 147
References 148
5 First-Principles Calculations of Structural, Elastic, Electronic, and Optical Properties of Pure and Tm2+-Doped Alkali?Earth Chlorides MCl2 (M = Ca, Sr, and Ba) 157
Abstract 157
5.1 Introduction 158
5.2 Crystal Structure 159
5.3 Methods of Calculations 160
5.3.1 Ab Initio Calculations 160
5.3.2 Crystal-Field Calculations and Exchange-Charge Model 161
5.4 Ab Initio Calculations for Pure CaCl2, SrCl2, and BaCl2 Crystals 164
5.5 Ab Initio Calculations for Tm2+-doped CaCl2, SrCl2, and BaCl2 Crystals 167
5.6 Crystal-Field Modeling of the Tm2+ Spectra in SrCl2 Crystal 171
5.7 Summary 173
Acknowledgments 173
References 174
6 First-Principles Calculation of Luminescent Materials 177
Abstract 177
6.1 The First-Principles Basic Theory, Related Software, and Luminescence Foundation 177
6.1.1 Born?Oppenheimer Approximation 178
6.1.2 Hartree?Fock Approximation 179
6.1.3 Density Functional Theory 181
6.1.4 Related Calculation Software 183
6.1.5 Luminescence Foundation 184
6.2 Photoluminescence Mechanism Based on the First-Principles Calculation 191
6.2.1 Intrinsic Luminescence 193
6.2.2 Native Defect Luminescence 197
6.2.3 Dopant or Doping-Induced Defect Luminescence 202
6.2.4 Conclusions 207
6.3 Calculation using the Advanced Density-Function Theory for Luminescence Materials 208
6.3.1 Excited-State Calculation 210
6.3.2 Band-Gap Correction for Luminescent Materials 211
6.3.3 Conclusions 217
6.4 Summary and Prospect 217
References 218
7 Color Tuning of Oxide Phosphors 223
Abstract 223
7.1 Introduction 223
7.2 Eu2+-Activated Phosphors 224
7.2.1 Ba9Sc2Si6O24:Eu2+ 224
7.2.2 AE2SiO4:Eu2+ (AE = Alkali Earth) 227
7.2.3 Li2SrSiO4:Eu2+ 229
7.2.4 Sr3B2O6:Eu2+ 231
7.2.5 NaMgPO4:Eu2+ 232
7.2.6 Ca3Si2O7:Eu2+ 235
7.3 Ce3+-Activated Phosphors 236
7.3.1 Ba3Sc4O9:Ce3+ 236
7.3.2 Sr6Y2Al4O15:Ce3+ 239
7.3.3 LiSr2YO4:Ce3+ 241
7.4 Fundamental Data for the Relationship Between the Average Distance and the Emission Wavelength in Eu2+ or Ce3+ -Activated Phosphor 242
References 246
8 Oxide Phosphors 251
Abstract 251
8.1 Introduction 251
8.2 Phosphors for Three-Band Fluorescent Lamps 252
8.2.1 Simple Oxide Red-Emitting Phosphor 252
8.2.2 Aluminate Phosphors 253
8.2.3 Phosphate Phosphors 255
8.3 Oxide Phosphors for Plasma Display Panels 257
8.3.1 Aluminate Phosphors 257
8.3.2 Silicate Phosphors 258
8.3.3 Borate Phosphors 259
8.3.4 Other Phosphors 261
8.4 Oxide Phosphors for White Light-Emitting Diodes 261
8.4.1 Aluminate Phosphors 261
8.4.2 Silicate Phosphors 263
8.4.3 Other Phosphors 265
8.5 Summary 266
Acknowledgments 266
References 266
9 Categories of Oxide Phosphors 269
Abstract 269
9.1 Introduction 269
9.1.1 Garnet Phosphor 270
9.1.1.1 YAG:Ce3+ 270
9.1.1.2 Ca3Sc2Si3O12:Ce3+ Phosphor 271
9.1.1.3 Ca2GdZr2(AlO4)3:Ce3+ Phosphor 272
9.1.2 Silicate Phosphor 274
9.1.2.1 NaAlSiO4:Eu2+ Phosphor 274
9.1.2.2 ?-Ca2SiO4:Ce3+ Phosphor 275
9.1.2.3 NaBaScSi2O7:Eu2+ Phosphors 276
9.1.3 Remote Phosphor with Packaging 277
9.1.3.1 Graphene-Embedded Remote Phosphor 278
9.1.3.2 Phosphor in Glass 281
9.1.3.3 Plate Remote Phosphor 282
9.2 Summary 284
References 284
10 Crystal Structures and Luminescence Properties of Oxyhalide-Based Phosphors 288
Abstract 288
10.1 Introduction 288
10.2 Binary Oxyhalide Phosphors 289
10.2.1 Sr4OCl6:Eu2+ (SOC:Eu2+) 289
10.2.2 (La,Ca)OCl:Eu3+ 290
10.2.3 LaOBr:Er3+ 290
10.3 Halo-Silicate Phosphors 291
10.3.1 Ca3SiO4Cl2 292
10.3.2 Ca10(Si2O7)3Cl2 295
10.3.3 Ca5(SiO4)2Cl2 296
10.3.4 Sr4Si3O8Cl4 296
10.3.5 Sr8(Si4O12)Cl8 296
10.3.6 Ba2SiO3Cl2 297
10.3.7 Ba5SiO4(F,Cl)6 298
10.3.8 Ba5SiO4Br6 298
10.3.9 Ca8Mg(SiO4)4Cl2 299
10.3.10 Ca8Zn(SiO4)4Cl2 300
10.3.11 Ca12Al14O32Cl2 300
10.3.12 Ca12Al10.6Si3.4O32Cl5.4 300
10.3.13 Y3Si2O8Cl 301
10.3.14 La3F3(Si3O9) 301
10.3.15 Sr2LiSiO4F 301
10.3.16 (CaCl2/SiO2) 303
10.4 Halo-Phosphate Phosphors 304
10.4.1 Ca5(PO4)3X (X = F, Cl) 305
10.4.2 Sr5(PO4)3X (X = F, Cl, Br) 306
10.4.3 Ba5(PO4)3X (X = F, Cl) 307
10.4.4 (Sr3,Ca,Ba)(PO4)3Cl 308
10.4.5 Ca2.6Sr2.4(PO4)3Cl 308
10.4.6 Ca2PO4Cl 309
10.4.7 Na2M(PO4)F (M = Sr, Ca) 309
10.5 Halo-Borate Phosphors 310
10.5.1 Ca2BO3Cl 311
10.5.2 Sr5(BO3)3Cl 313
10.5.3 M2B5O9X (M = Ca, Sr, Ba X = Cl, Br)
10.5.4 M2B5O9X:Sm2+ 315
10.5.5 Sr2B5O9X:Yb2+ and Sr2B5O9X:Pb2+ 316
10.5.6 Ba2Ln(BO3)2Cl (Ln = Rare Earth) 316
10.6 Halo-Aluminate Phosphors 318
10.6.1 Sr3Al2O5Cl2 and Sr3Ga2O5Cl2 318
10.6.2 Sr3AlO4F 321
10.7 Other Oxyhalide-Based Phosphors 323
10.7.1 KMgSO4Cl and KZnSO4Cl 323
10.7.2 Ca2BN2F 325
10.7.3 Ba3P5N10Br 325
10.8 The Work on Oxyhalide-Based Phosphors in Our Group 326
10.8.1 Our Work on Halo-Silicate Phosphors 326
10.8.2 Our Work on Halo-Borate Phosphors 332
10.8.3 Our Work on Halo-Aluminate Phosphors 336
10.9 Some Challenges and Future Work 338
References 339
11 Tuning Luminescence by Varying the O/N or Al/Si Ratio in Some Eu-Doped Nitride Phosphors 345
Abstract 345
11.1 Introduction 345
11.2 CaAlSiN3:Eu2+ and (Sr, Ca)(Al, Si)2(N, O)3:Eu2+ Phosphors 348
11.2.1 CaAlSiN3-Type Structure 348
11.2.2 Luminescence 351
11.3 M2Si5N8:Eu2+ and M2(Si, al)5(N, O)8:Eu2+ (M = Ca, Sr, Ba) Phosphors 356
11.3.1 Crystal Structure of M2Si5N8 (M = Ca, Sr, Ba) 356
11.3.2 Luminescence 360
11.4 Sialon:Eu2+ Phosphors 362
11.4.1 Structures 362
11.4.2 Luminescence 365
11.5 Relationship of f-d Transition with Structure and Composition in Nitrides 368
References 369
12 Characteristics and Properties of A(I,II)M(IV)F6 Fluoride Phosphors 373
Abstract 373
12.1 Introduction 373
12.2 Inorganic Luminescence Materials 375
12.3 Luminescence Centers 377
12.4 Energy-Level Diagrams of 3d3 Transition-Metal Ions 378
12.5 Synthesis Methods and Optoelectronic Properties of Mn+-Doped Fluoride Phosphor A(I,II)M(IV)F6 379
12.6 Morphology Control 390
12.7 Thermal Stability 392
12.8 High-Pressure Photoluminescence Properties 393
12.9 Waterproof Properties 394
12.10 Summary and Perspectives 396
References 397
13 Novel Phosphors for UVLEDs 401
Abstract 401
13.1 Introduction 401
13.2 Silicate-Based Phosphors 402
13.3 Borate-Based Phosphors 406
13.4 Phosphate-Based Phosphors 410
13.5 Nitride-Based Phosphors 413
13.6 Summary 419
References 419
14 Bismuth-Doped Photonic Materials: Are They Promising Phosphors for WLEDs? 422
Abstract 422
14.1 Introduction 422
14.2 The Nature of Bi3+ Luminescence 425
14.3 Bi3+-Doped Glasses 426
14.3.1 Bi3+-Doped Borate and Silicate Glasses 426
14.3.2 Mechanism for the Compositional Dependence of Bi3+ Emission in Borate and Silicate Glasses 430
14.4 Bi3+-Doped Crystals 431
14.4.1 Bi3+-Doped Borate, Aluminate, Gallate, and Indate Crystals 431
14.4.2 Other Bi3+-Doped Compounds 431
14.4.3 Bi3+-Doped Vanadates 434
14.4.4 Tuning Bi3+ PL 441
14.4.5 The Resistance of Bi3+ PL to Thermal Impact 444
14.4.6 The Effect of Site Symmetry on Quenching of Bi3+ PL 449
14.5 The Application of Bi3+-Doped Phosphors in NUV-WLED 450
14.6 Summary and Perspectives 453
Acknowledgments 454
References 454
15 Design of Single-Phased Multicolor-Emission Phosphor for LED 459
Abstract 459
15.1 Introduction 459
15.1.1 History of Light-Emitting Diodes 459
15.1.2 Basic Concepts of Phosphor 461
15.1.3 Methods to Obtain White Light-Emitting Diodes 461
15.2 Phosphor-Converted W-LEDs 463
15.2.1 Requirements for W-LED Phosphor 463
15.2.2 Two-Phosphor Method for Creating White LEDs 467
15.2.3 Tricolor Phosphor?Converted White LEDs 469
15.3 Approaches to Realize a Multicolor Phosphor 470
15.3.1 Enriching the Red Emission of YAG:Ce3+ Yellow Phosphor 470
15.3.2 Single Activator?Doped Systems 473
15.3.2.1 Trivalent Rare-Earth Ions Doped with Single-Phased Sample (Pr3+, Eu3+, Tb3+, Dy3+) 473
15.3.2.2 Multi-cation Sites Ce3+, Eu2+ 479
15.3.2.3 Eu2+ and Eu3+ Coexistence 484
15.3.3 Energy-Transfer Type of Downshift Phosphor 486
15.3.3.1 Broadband Sensitizer: Ce3+, Eu2+ 486
15.3.3.2 Host Sensitizer Type 490
15.3.3.3 Narrow Line Sensitizer: Tb3+ ? Eu3+ 495
15.3.4 Upconversion Multicolor-Emitting Phosphor 496
15.3.5 Quantum Dots and Defects 501
15.4 Summary and Outlook 502
References 502
16 Crystal Structure and Luminescence Properties of Some Fluorides, (Oxy)nitrides and Oxides Phosphors 509
16.1 Downconverson/Upconversion Fluoride Phosphors 509
16.1.1 Crystal Structure of Some Selected Fluorides 510
16.1.2 Downconversion Fluoride Phosphors 514
16.1.3 Upconversion Phosphors 521
16.1.4 Summary 531
16.2 Nitridosilicate Phosphors 531
16.2.1 Introduction 531
16.2.2 Synthetic Approaches 532
16.2.2.1 High-Temperature Solid-State Reactions 533
16.2.2.2 Gas Reduction and Nitridation 535
16.2.2.3 Carbothermal Reduction and Nitridation 536
16.2.2.4 Ammonothermal Synthesis 536
16.2.2.5 Direct Nitridation 537
16.2.3 Nitride Phosphors in White LEDs 537
16.2.3.1 ?-Sialon 538
Crystal Chemistry of ?-Sialon 538
Photoluminescence of ?-Sialon:Ce3+ 540
Photoluminescence of Ca-?-Sialon:Eu2+ 541
Photoluminescence of Ca-?-sialon:Yb2+ 542
16.2.3.2 ?-sialon 543
Crystal Chemistry of ?-sialon 543
Photoluminescence of ?-sialon:Eu2+ 543
16.2.3.3 MSi2O2N2:Eu2+ (M = Ca, Sr, Ba) 545
Crystal Chemistry of MSi2O2N2 (M = Ca, Sr, Ba) 545
Photoluminescence of MSi2O2N2:Eu2+ (M = Ca, Sr, Ba) 546
16.2.3.4 CaAlSiN3 547
Crystal Structure of CaAlSiN3 547
Photoluminescence Properties of CaAlSiN3:Ce3+ 547
Photoluminescence Properties of CaAlSiN3:Eu2+ 549
16.2.3.5 M2Si5N8 (M = Ca, Sr, Ba) 550
Crystal Structure of M2Si5N8 (M = Ca, Sr, Ba) [56] 550
Photoluminescence of M2Si5N8:Ce3+ (M = Ca, Sr, Ba) 551
Photoluminescence of M2Si5N8:Eu2+ (M = Ca, Sr, Ba) 552
16.2.3.6 LaAl(Si6–zAlz)(N10–zOz):Ce3+ (z = 1) 553
16.2.3.7 AlN:Eu2+ 553
16.2.3.8 Ln–Si–O–N:Ce3+ (Ln = Y, La) 555
16.2.3.9 LaSi3N5:Ce3+ 556
16.2.3.10 Ba3Si6O12N2:Eu2+ 557
16.2.3.11 SrAlSi4N7:Eu2+ [115, 154] 559
16.2.3.12 MSiN2:Eu2+/Ce3+ 560
16.2.4 Summary 562
16.3 Long-Persistent Phosphors 563
16.3.1 Introduction to Long-Persistent Phosphors 563
16.3.2 Luminescent Properties of Long-Persistent Phosphors 564
16.3.3 Luminescent Mechanisms of Long-Persistent Phosphors 569
16.3.4 Summary 572
16.4 Oxide Phosphors for White LEDs and Plasma-Display Panels (PDPs) 573
16.4.1 Oxide Phosphor for White LEDs 573
16.4.2 Oxide Phosphor for PDPs 578
16.5 Concluding Remarks 583
References 583

Erscheint lt. Verlag 4.10.2016
Zusatzinfo VIII, 593 p. 377 illus., 257 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Technik Maschinenbau
Schlagworte Bio-Imaging • Display • Lighting • Phosphors • Quantum dots • White Light-emitting Diodes
ISBN-10 3-662-52771-5 / 3662527715
ISBN-13 978-3-662-52771-9 / 9783662527719
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 22,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
Walter de Gruyter GmbH & Co.KG (Verlag)
44,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
Walter de Gruyter GmbH & Co.KG (Verlag)
44,95