Multiscale Characterization of Biological Systems (eBook)

Spectroscopy and Modeling
eBook Download: PDF
2015 | 1st ed. 2015
X, 93 Seiten
Springer New York (Verlag)
978-1-4939-3453-9 (ISBN)

Lese- und Medienproben

Multiscale Characterization of Biological Systems -  Devendra K. Dubey,  Tao Qu,  Vikas Tomar,  Devendra Verma,  Yang Zhang
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers the latest research work done in the area of interface mechanics of collagen and chitin-based biomaterials along with various techniques that can be used to understand mechanics of biological systems and materials. Topics covered include Raman spectroscopy of biological systems, scale dependence of the mechanical properties and microstructure of crustaceans thin films as biomimetic materials, as well as the role of molecular-level modeling. The use of nanomechanics to investigate interface thermomechanics of collagen and chitin-based biomaterials is also covered in detail.

This book also:

•Details spectroscope experiments as well as nanomechanic experiments

•Reviews exhaustively phenomenological models and Raman spectroscopy of biological systems

•Covers the latest in multiscaling for molecular models to predict lab-scale sample properties and               investigates interface thermomechanics



Vikas Tomar is an Associate Professor at Purdue University-West Lafayette. His research focuses on understanding how interfaces contribute to failure of complex materials with a specific emphasis on microstructural issues. He has developed three different multiscale modeling methods and a new experimental scheme called nanomechanical Raman spectroscopy. Dr. Tomar has been a recipient of multiple research awards, including the inaugural Material Science and Engineering-C Young Researcher award. He is Editor-in-Chief of the International Journal of Experimental and Computation Biomechanics and is an Associate Editor of the Journal of Engineering Materials and Technology. He is an associate fellow of AIAA.

Devendra Dubey is an Assistant Professor in Mechanical Engineering Department at the Indian Institute of Technology Delhi, India. He received his Ph.D. from Purdue University, Indiana, USA; MS in mechanical engineering from University of Notre Dame, Indiana, USA; and Bachelor's degree from Indian Institute of Technology Bombay, Mumbai, India. Dr. Dubey works in the general area of computational mechanics at multiple length scales with a focus on understanding interfacial interactions and structure-property. He has previously worked on nano
mechanics of polymer-ceramic type collagen-hydroxyapatite biomaterials and his current research involves nanomechanics of brittle of bone disease, impact mitigation of ballistic structures, biomechanics and bio-tribology of knee and hip joints, mechanical reliability of solar cells, and blast injury mechanics of human body.

Yang Zhang is currently a doctoral student in the School of Aeronautics and Astronautics at Purdue University working with Dr. Vikas Tomar. His Ph.D. work is focused on characterization of high temperature crack tip plasticity and size effect in nickel based super alloy using nanomechanical Raman spectroscopy and high temperature indentation. Yang graduated from the University of Science and Technology of China in June 2009 with a Bachelor's degree in mechanical engineering. He received his Master's degree in mechanical engineering from the University of Science and Technology of China in June 2012. He has received a Pan-Deng Scholarship in Mechanics from the Chinese Academy of Sciences and a NSF Fellowship for the Summer Institute Workshop on Extreme Resolution Bioimaging Technologies during his graduate study.

Devendra Verma is currently a doctoral student in the School of Aeronautics and Astronautics at Purdue University working with Dr. Vikas Tomar. His Ph.D. work is focused on understanding the interfacial damage mechanics of metallic and biomimetic materials during impact loading. Verma graduated from the Indian Institute of Technology, Kanpur in May 2011 with a Bachelor's in Aerospace Engineering. He received his Master's from Purdue
's School of AAE in December 2012. He has received several awards, including the ASME AMD Haythornthwaite Travel Award, the College of Engineering Outstanding Service Award, the WCCM-World Congress on Computational Mechanics Conference Travel Award, and the Graduate Student Excellence Award during his graduate study.

Tao Qu is a doctoral student in Aeronautics and Astronautics Engineering at Purdue University-West Lafayette. His research focuses on understanding how interfaces contribute to failure of composite/biomimetic materials from atomistic- to continuum-level. He has developed the nanomechanics-based computational framework for modeling interface deformation as well as interface strength with atomistic computational method and finite element method. Tao Qu's work has been published in Materials Science and Engineering: C, MRS Bulletin, and Acta biomaterialia, etc. He
received the National Science Foundation Fellowship for a workshop on bioimaging technologies in 2013.


This book covers the latest research work done in the area of interface mechanics of collagen and chitin-based biomaterials along with various techniques that can be used to understand mechanics of biological systems and materials. Topics covered include Raman spectroscopy of biological systems, scale dependence of the mechanical properties and microstructure of crustaceans thin films as biomimetic materials, as well as the role of molecular-level modeling. The use of nanomechanics to investigate interface thermomechanics of collagen and chitin-based biomaterials is also covered in detail.This book also:* Details spectroscope experiments as well as nanomechanic experiments* Reviews exhaustively phenomenological models and Raman spectroscopy of biological systems* Covers the latest in multiscaling for molecular models to predict lab-scale sample properties and               investigates interface thermomechanics

Vikas Tomar is an Associate Professor at Purdue University-West Lafayette. His research focuses on understanding how interfaces contribute to failure of complex materials with a specific emphasis on microstructural issues. He has developed three different multiscale modeling methods and a new experimental scheme called nanomechanical Raman spectroscopy. Dr. Tomar has been a recipient of multiple research awards, including the inaugural Material Science and Engineering-C Young Researcher award. He is Editor-in-Chief of the International Journal of Experimental and Computation Biomechanics and is an Associate Editor of the Journal of Engineering Materials and Technology. He is an associate fellow of AIAA.Devendra Dubey is an Assistant Professor in Mechanical Engineering Department at the Indian Institute of Technology Delhi, India. He received his Ph.D. from Purdue University, Indiana, USA; MS in mechanical engineering from University of Notre Dame, Indiana, USA; and Bachelor’s degree from Indian Institute of Technology Bombay, Mumbai, India. Dr. Dubey works in the general area of computational mechanics at multiple length scales with a focus on understanding interfacial interactions and structure-property. He has previously worked on nanomechanics of polymer-ceramic type collagen-hydroxyapatite biomaterials and his current research involves nanomechanics of brittle of bone disease, impact mitigation of ballistic structures, biomechanics and bio-tribology of knee and hip joints, mechanical reliability of solar cells, and blast injury mechanics of human body.Yang Zhang is currently a doctoral student in the School of Aeronautics and Astronautics at Purdue University working with Dr. Vikas Tomar. His Ph.D. work is focused on characterization of high temperature crack tip plasticity and size effect in nickel based super alloy using nanomechanical Raman spectroscopy and high temperature indentation. Yang graduated from the University of Science and Technology of China in June 2009 with a Bachelor’s degree in mechanical engineering. He received his Master’s degree in mechanical engineering from the University of Science and Technology of China in June 2012. He has received a Pan-Deng Scholarship in Mechanics from the Chinese Academy of Sciences and a NSF Fellowship for the Summer Institute Workshop on Extreme Resolution Bioimaging Technologies during his graduate study.Devendra Verma is currently a doctoral student in the School of Aeronautics and Astronautics at Purdue University working with Dr. Vikas Tomar. His Ph.D. work is focused on understanding the interfacial damage mechanics of metallic and biomimetic materials during impact loading. Verma graduated from the Indian Institute of Technology, Kanpur in May 2011 with a Bachelor’s in Aerospace Engineering. He received his Master’s from Purdue's School of AAE in December 2012. He has received several awards, including the ASME AMD Haythornthwaite Travel Award, the College of Engineering Outstanding Service Award, the WCCM-World Congress on Computational Mechanics Conference Travel Award, and the Graduate Student Excellence Award during his graduate study.Tao Qu is a doctoral student in Aeronautics and Astronautics Engineering at Purdue University–West Lafayette. His research focuses on understanding how interfaces contribute to failure of composite/biomimetic materials from atomistic- to continuum-level. He has developed the nanomechanics-based computational framework for modeling interface deformation as well as interface strength with atomistic computational method and finite element method. Tao Qu’s work has been published in Materials Science and Engineering: C, MRS Bulletin, and Acta biomaterialia, etc. He received the National Science Foundation Fellowship for a workshop on bioimaging technologies in 2013.

Introduction.- Spectroscopic Experiments: A Review of Raman Spectroscopy of Biological Systems.- Nanomechanics Experiments: A Microscopic Study of Mechanical Property Scale Dependence and Microstructure of Crustaceans’ Thin Films as Biomimetic Materials.- Molecular Modeling: A Review of Nanomechanics Based on Molecular Modeling.- Multiscaling for Molecular Models to Predict Lab Scale Sample Properties: A Review of Phenomenological Models.- Multiscaling for Molecular Models: Investigating Interface Thermomechanics.- Index.

Erscheint lt. Verlag 30.11.2015
Zusatzinfo X, 93 p.
Verlagsort New York
Sprache englisch
Themenwelt Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Naturwissenschaften Chemie Analytische Chemie
Naturwissenschaften Physik / Astronomie
Technik Bauwesen
Technik Umwelttechnik / Biotechnologie
Schlagworte Atomistics • Biological Systems • Microscopy • Phenomenological models • spectroscopy
ISBN-10 1-4939-3453-8 / 1493934538
ISBN-13 978-1-4939-3453-9 / 9781493934539
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 6,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich