Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage (eBook)

From Theory to Engineering to Practice
eBook Download: PDF
2015 | 1st ed. 2016
VII, 249 Seiten
Springer London (Verlag)
978-1-4471-5677-2 (ISBN)

Lese- und Medienproben

Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation.

In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. P

hysical multiscale modeling approaches bridge the gap between materials' atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.





The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation.In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials' atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.

Preface 6
Contents 8
1 Atomistic Modeling of Electrode Materials for Li-Ion Batteries: From Bulk to Interfaces 9
Abstract 9
1 Introduction 9
2 Macroscopic Picture of an Electrochemical Reaction 11
2.1 Microscopic Picture of an Electrochemical Reaction 13
2.2 Beyond the Thermodynamic Equilibrium 14
2.3 First-Principles Approach to Condensed Matter 15
3 Modelization of Bulk Materials 18
3.1 Equilibrium Crystal Structures 18
3.2 Finite Temperature Effects 21
3.3 Electrochemical Properties 24
4 Modelization of Interfaces 30
4.1 Surface/Interface Thermodynamics 30
4.2 First-Principles Approach to Charged Surfaces 33
4.3 Application to Solid/Liquid Interfaces 35
4.4 Application to Solid/Solid Interfaces 36
5 Perspectives 39
References 40
2 Multi-scale Simulation Study of Pt-Alloys Degradation for Fuel Cells Applications 45
Abstract 45
1 Introduction 45
2 Time Evolution by Molecular Dynamics and DFT Simulations 48
3 Time Evolution of PtM Alloys by KMC Methods 51
4 Degradation of PtCo Skin 57
5 Concluding Remarks 64
References 65
3 Molecular Dynamics Simulations of Electrochemical Energy Storage Devices 68
Abstract 68
1 Introduction 69
2 Molecular Dynamics 71
2.1 Principle 71
2.2 All-Atom Force Fields 71
2.3 Modelling Metallic Electrodes at Constant Potential 72
2.4 Coarse-Grained Force Fields 73
3 Li-Ion Batteries 74
3.1 A Polarizable Force Field Based on First-Principles Calculations 75
3.2 Conduction Mechanism in Stoichiometric LiMgSO4F 76
3.3 Effect of Li+ Vacancies 80
3.4 On the Importance of Finite-Size Effects 82
4 Supercapacitors 83
4.1 Increase of the Capacitance in Nanoporous Carbons 83
4.2 Effect of the Local Structure 86
4.3 Dynamics of Charging: Coarse-Graining Further 88
5 Perspectives 89
References 90
4 Continuum, Macroscopic Modeling of Polymer-Electrolyte Fuel Cells 97
Abstract 97
1 Introduction 97
1.1 Modeling Dimension 101
2 Basic Governing Equations 103
2.1 Material 104
2.1.1 Charge 106
2.1.2 Momentum 109
2.1.3 Energy 110
3 Membrane 112
3.1 Membrane Uptake, Morphology, and Function 114
3.1.1 Calculating Water Uptake 116
3.2 Transport Equations 119
3.2.1 General Governing Equations 119
3.2.2 Choice of Water Driving Force and Transport Parameters 121
3.2.3 Gas Crossover 123
3.3 Membrane Swelling 124
3.4 Contamination and Multi-ion Transport 125
4 Gas-Diffusion Media 128
4.1 Modeling Equations 128
4.1.1 Gas Phase 129
4.1.2 Liquid Phase 130
4.1.3 Heat Transport 131
4.1.4 Liquid/Vapor/Heat Interactions 132
4.2 Microporous Layers and Pore-Network Modeling 133
4.3 Transport in the Gas Channel 134
4.3.1 Droplet Movement 136
5 Catalyst Layer 137
5.1 Kinetics 138
5.2 Transport Phenomena 143
5.2.1 Agglomerate Length Scale and Ionomer Films 144
5.3 Electrochemical Impedance Spectroscopy 146
6 Summary and Future Outlook 149
References 150
5 Mathematical Modeling of Aging of Li-Ion Batteries 156
Abstract 156
1 Introduction 156
2 Brief Overview of the Degradation Phenomena in Li-Ion Batteries 160
2.1 Aging at the Anode 160
2.2 Aging at the Cathode 163
3 Mathematical Models 166
3.1 Performance (Aging-Free) Models 166
3.1.1 Model of the Elementary Sandwich (``Dualfoil'') 166
3.1.2 Single-Particle Model 169
3.2 Modeling of Aging Phenomena 170
4 Model-Aided Analysis of Battery Aging 177
4.1 Typical Aging Experiments and Characterization 177
4.1.1 Aging protocols 177
4.1.2 Nonintrusive Cell Characterization Techniques 178
4.1.3 Intrusive Analysis 182
4.2 ``Snapshot'' Analysis with the Aging-Free Model 185
4.3 Analysis with the Aging Model 189
5 Outlook of Physics-Based Aging Modeling 191
References 192
6 Fuel Cells and Batteries In Silico Experimentation Through Integrative Multiscale Modeling 196
Abstract 196
1 Introduction 197
1.1 The Role of Computational Electrochemistry 198
2 Integrative Multiscale Modeling Methods 200
3 Application Examples 206
3.1 Microstructurally Resolved Performance Models 206
3.2 Performance Models with Detailed Electrochemistry 219
4 Conclusions and Open Challenges 229
References 233
7 Cost Modeling and Valuation of Grid-Scale Electrochemical Energy Storage Technologies 239
Abstract 239
1 Introduction 240
2 Methodology 241
3 Performance Matrix 242
4 Techno-Economic Cost Modeling 244
4.1 Analytics Framework 245
4.2 Determining Storage Benefits 245
5 Databases 249
5.1 Database of Storage Technologies 249
5.2 Database of Storage Applications 250
6 Storage Valuation 250
7 Summary and Conclusion 252
References 252

Erscheint lt. Verlag 12.11.2015
Reihe/Serie Green Energy and Technology
Zusatzinfo VII, 249 p.
Verlagsort London
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Schlagworte Electrochemistry and Physical Modeling • Energy Conversion and Storage • multiscale methods • numerical simulation • PEM Fuel Cells, Solid Fuel Cells and Electrolyzers
ISBN-10 1-4471-5677-3 / 1447156773
ISBN-13 978-1-4471-5677-2 / 9781447156772
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 9,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald; Natalie Rudolph

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
69,99