This new volume of Advances in Pharmacology presents pharmacology of the blood brain barrier, focusing on targeting CNS disorders. With a variety of chapters and the best authors in the field, the volume is an essential resource for pharmacologists, immunologists and biochemists alike. - Contributions from the best authors in the field- An essential resource for pharmacologists, immunologists, and biochemists
ABC Transporter Regulation by Signaling at the Blood–Brain Barrier
Relevance to Pharmacology
David S. Miller1 Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
1 Corresponding author: email address: miller@niehs.nih.gov
Abstract
Brain capillary endothelial cells express multiple ATP-binding cassette transport proteins on the luminal, blood-facing, plasma membrane. There these transporters function as ATP-driven efflux pumps for xenobiotics and endogenous metabolites, providing an important element of the barrier. When the transporters limit neurotoxicant entry into the central nervous system (CNS), they are neuroprotective; when they limit therapeutic drug entry, they are obstacles to drug delivery to treat CNS diseases. Certainly, changes in the transporter expression and transport activity can have a profound effect on CNS pharmacotherapy, with increased transport activity reducing drug access to the brain and vice versa. Here, I review the signals that alter transporter expression and transport function with an emphasis on P-glycoprotein, MRP2, and breast cancer resistance protein (ABCG2) (BCRP), the efflux transporters for which we have the most detailed picture of regulation. Recent work shows that transporter protein expression can be upregulated in response to inflammatory and oxidative stress, therapeutic drugs, diet, and persistent environmental pollutants; as a consequence, drug delivery to the brain is reduced. For many of these stimuli, the transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), appears to be involved. However, NF-κB activation and nuclear translocation is often initiated by upstream signaling. In contrast, basal transport activity of P-glycoprotein and BCRP can be reduced through complex signaling pathways. Targeting such signals provides opportunities to rapidly and reversibly increase brain accumulation of drugs that are transporter substrates. The extent to which such signaling-based strategies can be utilized in the clinic remains to be seen.
Keywords
P-glycoprotein
Multidrug resistance-associated proteins
Breast-cancer-related protein
Altered expression
Reduced transport activity
Signaling
Abbreviations
ABC ATP-binding cassette
AEDs antiepileptic drugs
AhR arylhydrocarbon receptor
Akt protein kinase B
BCRP breast cancer resistance protein (ABCG2)
CAR constitutive androstane receptor
CNS central nervous system
COX-2 cyclooxygenase-2
E2 17-β-estradiol
EP-1 prostaglandin E2 receptor
ER estrogen receptor
ET-1 endothelin-1
GR glucocorticoid receptor
GSK-3β glycogen synthase kinase 3 beta
iNOS inducible nitric oxide synthase
MRP multidrug resistance-associated protein (ABCC subfamily)
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
NMDA N-methyl-d-aspartate
Nrf2 nuclear factor (erythroid-derived 2)-like 2
PI3-K phosphatidylinositide 3-kinase
PKCβ1 protein kinase C isoform β1
PTEN phosphatase and tensin homolog
PXR pregnane X receptor
S1P sphingosine-1-phosphate
S1PR1 sphingosine-1-phosphate receptor 1
TNF-α tumor necrosis factor-α
VDR vitamin D receptor
VEGF vascular endothelial growth factor
1 Introduction
Biological signaling refers to the transfer of information within organisms, tissues, and cells and over the dimensions of space and time. In essence, this flow of information allows the various parts of multicellular organisms and cells to communicate with each other and be aware of alterations in their extracellular and intracellular microenvironment so that they can respond appropriately and preserve homeostasis. In general, cells sense changes in their external environment as altered levels of nutrients, toxicants, stressors, and signaling molecules that might be receptor ligands or hormones. Cells then change the form of the message and respond by altered cellular function, e.g., altered pattern of gene expression, activation or inhibition of metabolism, release of additional signals. On the one hand, cell signaling is a part of a complex system of communication that governs basic cell, tissue, and organismal activities and coordinates actions and responses. On the other hand, aberrant signaling is the mechanistic basis for many diseases, including cancer and diabetes.
The traditional concept of biological signaling has invoked discrete pathways. However, we have long known that these pathways intersect, that the intersections are numerous and that the connected pathways can form complex signaling networks. It has become clear that a full understanding of cell function and regulation requires knowledge of the major signaling pathways, the underlying structure of signaling networks, the emergent features of the networks, and the ways by which changes in network structure affect the transmission and flow of information over space and time. Whether we are considering genetic or metabolic networks, the existence of complex network structures within cells has important implications. First, network structure indicates that multiple paths are available for signals to flow from point A to point B (Janes & Lauffenberger, 2013). This implies that the path taken and the integrated response can be context-dependent, i.e., determined by what else may be happening within the cell or tissue. For example, such complexity has been shown to be the basis for interaction between growth factor and proinflammatory signaling (Janes & Lauffenberger, 2013). Second, complex multicomponent signaling pathways provide opportunities for feedback, signal amplification, and interactions involving multiple signals and signaling pathways. Third, added complexity comes from the fact that signaling networks have an intrinsic spatial component, since signals often must cross multiple cellular domains, e.g., plasma membrane, cytoplasm, and nucleus.
Cellular signaling networks come in two flavors: genetic and metabolic. Genetic networks are characterized by a structure that is focused on gene expression and thus leads to alterations in the mRNA and/or protein expression of key components; these in turn affect cell function (Boucher & Jenna, 2013). Because of the time required for transcription/translation, responses mediated through genetic networks occur over timescales of tens of minutes to hours. Metabolic networks consist of proteins that function as switches turning off or on other key enzymes, channels, and transporters. They provide the capability to rapidly alter cell function, often within seconds or minutes. They also may be key elements of genetic networks, providing intermediate connections among, e.g., spatially removed elements (Janes & Lauffenberger, 2013). As shown below, it is clear that ATP-binding cassette (ABC) transporters at the blood–brain barrier respond to both genomic and nongenomic signals, resulting in changes in protein expression and activity (genomic) and in transport activity but not in protein expression (nongenomic or metabolic).
2 ABC Transporters at the Blood–Brain Barrier
This review is focused on the regulation of blood–brain barrier transporters that are members of the ABC family and that handle foreign chemicals (xenobiotics). The human genome contains 49 genes encoding ABC transporters, divided into seven different subfamilies, A–G, based on their evolutionary divergence (Moitra & Dean, 2011). The defining molecular signature of ABC family members is the presence of several consensus sequences including two ATP-binding motifs (Walker A and Walker B), as well as the ABC signature C motif (ALSGGQ) (Kuhnline Sloan et al., 2012). ABC family members include proteins that function as ATP-driven transporters on both surface and intracellular membranes, ion channels, and receptors. Mutations in some of the ABC genes result in genetic disorders such as cystic fibrosis (ABCC7, CFTR, the Cystic Fibrosis Transmembrane Regulator, a chloride channel), Dubin Johnson's syndrome (ABCC2, MRP2, a metabolite and drug transporter), progressive familial intrahepatic cholestasis (ABCB11, BSEP, a bile salt efflux pump), and retinal degeneration (ABCA4, a lipid flippase) (Moitra & Dean, 2011).
For vertebrates, three ABC subfamilies, B, C, and G, contain...
Erscheint lt. Verlag | 21.10.2014 |
---|---|
Sprache | englisch |
Themenwelt | Medizin / Pharmazie ► Gesundheitsfachberufe |
Medizin / Pharmazie ► Medizinische Fachgebiete ► Pharmakologie / Pharmakotherapie | |
ISBN-10 | 0-12-800338-3 / 0128003383 |
ISBN-13 | 978-0-12-800338-1 / 9780128003381 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Größe: 9,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich