Um unsere Webseiten für Sie optimal zu gestalten und fortlaufend zu verbessern, verwenden wir Cookies. Durch Bestätigen des Buttons »Akzeptieren« stimmen Sie der Verwendung zu. Über den Button »Einstellungen« können Sie auswählen, welche Cookies Sie zulassen wollen.

AkzeptierenEinstellungen
Pharmacology of the Blood Brain Barrier: Targeting CNS Disorders -

Pharmacology of the Blood Brain Barrier: Targeting CNS Disorders (eBook)

Thomas P Davis (Herausgeber)

eBook Download: PDF | EPUB
2014 | 1. Auflage
512 Seiten
Elsevier Science (Verlag)
978-0-12-800338-1 (ISBN)
195,00 € inkl. MwSt
Systemvoraussetzungen
194,23 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This new volume of Advances in Pharmacology presents pharmacology of the blood brain barrier, focusing on targeting CNS disorders. With a variety of chapters and the best authors in the field, the volume is an essential resource for pharmacologists, immunologists and biochemists alike. - Contributions from the best authors in the field - An essential resource for pharmacologists, immunologists, and biochemists
This new volume of Advances in Pharmacology presents pharmacology of the blood brain barrier, focusing on targeting CNS disorders. With a variety of chapters and the best authors in the field, the volume is an essential resource for pharmacologists, immunologists and biochemists alike. - Contributions from the best authors in the field- An essential resource for pharmacologists, immunologists, and biochemists

Chapter One

ABC Transporter Regulation by Signaling at the Blood–Brain Barrier


Relevance to Pharmacology


David S. Miller1    Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
1 Corresponding author: email address: miller@niehs.nih.gov

Abstract


Brain capillary endothelial cells express multiple ATP-binding cassette transport proteins on the luminal, blood-facing, plasma membrane. There these transporters function as ATP-driven efflux pumps for xenobiotics and endogenous metabolites, providing an important element of the barrier. When the transporters limit neurotoxicant entry into the central nervous system (CNS), they are neuroprotective; when they limit therapeutic drug entry, they are obstacles to drug delivery to treat CNS diseases. Certainly, changes in the transporter expression and transport activity can have a profound effect on CNS pharmacotherapy, with increased transport activity reducing drug access to the brain and vice versa. Here, I review the signals that alter transporter expression and transport function with an emphasis on P-glycoprotein, MRP2, and breast cancer resistance protein (ABCG2) (BCRP), the efflux transporters for which we have the most detailed picture of regulation. Recent work shows that transporter protein expression can be upregulated in response to inflammatory and oxidative stress, therapeutic drugs, diet, and persistent environmental pollutants; as a consequence, drug delivery to the brain is reduced. For many of these stimuli, the transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), appears to be involved. However, NF-κB activation and nuclear translocation is often initiated by upstream signaling. In contrast, basal transport activity of P-glycoprotein and BCRP can be reduced through complex signaling pathways. Targeting such signals provides opportunities to rapidly and reversibly increase brain accumulation of drugs that are transporter substrates. The extent to which such signaling-based strategies can be utilized in the clinic remains to be seen.

Keywords

P-glycoprotein

Multidrug resistance-associated proteins

Breast-cancer-related protein

Altered expression

Reduced transport activity

Signaling

Abbreviations

ABC ATP-binding cassette

AEDs antiepileptic drugs

AhR arylhydrocarbon receptor

Akt protein kinase B

BCRP breast cancer resistance protein (ABCG2)

CAR constitutive androstane receptor

CNS central nervous system

COX-2 cyclooxygenase-2

E2 17-β-estradiol

EP-1 prostaglandin E2 receptor

ER estrogen receptor

ET-1 endothelin-1

GR glucocorticoid receptor

GSK-3β glycogen synthase kinase 3 beta

iNOS inducible nitric oxide synthase

MRP multidrug resistance-associated protein (ABCC subfamily)

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

NMDA N-methyl-d-aspartate

Nrf2 nuclear factor (erythroid-derived 2)-like 2

PI3-K phosphatidylinositide 3-kinase

PKCβ1 protein kinase C isoform β1

PTEN phosphatase and tensin homolog

PXR pregnane X receptor

S1P sphingosine-1-phosphate

S1PR1 sphingosine-1-phosphate receptor 1

TNF-α tumor necrosis factor-α

VDR vitamin D receptor

VEGF vascular endothelial growth factor

1 Introduction


Biological signaling refers to the transfer of information within organisms, tissues, and cells and over the dimensions of space and time. In essence, this flow of information allows the various parts of multicellular organisms and cells to communicate with each other and be aware of alterations in their extracellular and intracellular microenvironment so that they can respond appropriately and preserve homeostasis. In general, cells sense changes in their external environment as altered levels of nutrients, toxicants, stressors, and signaling molecules that might be receptor ligands or hormones. Cells then change the form of the message and respond by altered cellular function, e.g., altered pattern of gene expression, activation or inhibition of metabolism, release of additional signals. On the one hand, cell signaling is a part of a complex system of communication that governs basic cell, tissue, and organismal activities and coordinates actions and responses. On the other hand, aberrant signaling is the mechanistic basis for many diseases, including cancer and diabetes.

The traditional concept of biological signaling has invoked discrete pathways. However, we have long known that these pathways intersect, that the intersections are numerous and that the connected pathways can form complex signaling networks. It has become clear that a full understanding of cell function and regulation requires knowledge of the major signaling pathways, the underlying structure of signaling networks, the emergent features of the networks, and the ways by which changes in network structure affect the transmission and flow of information over space and time. Whether we are considering genetic or metabolic networks, the existence of complex network structures within cells has important implications. First, network structure indicates that multiple paths are available for signals to flow from point A to point B (Janes & Lauffenberger, 2013). This implies that the path taken and the integrated response can be context-dependent, i.e., determined by what else may be happening within the cell or tissue. For example, such complexity has been shown to be the basis for interaction between growth factor and proinflammatory signaling (Janes & Lauffenberger, 2013). Second, complex multicomponent signaling pathways provide opportunities for feedback, signal amplification, and interactions involving multiple signals and signaling pathways. Third, added complexity comes from the fact that signaling networks have an intrinsic spatial component, since signals often must cross multiple cellular domains, e.g., plasma membrane, cytoplasm, and nucleus.

Cellular signaling networks come in two flavors: genetic and metabolic. Genetic networks are characterized by a structure that is focused on gene expression and thus leads to alterations in the mRNA and/or protein expression of key components; these in turn affect cell function (Boucher & Jenna, 2013). Because of the time required for transcription/translation, responses mediated through genetic networks occur over timescales of tens of minutes to hours. Metabolic networks consist of proteins that function as switches turning off or on other key enzymes, channels, and transporters. They provide the capability to rapidly alter cell function, often within seconds or minutes. They also may be key elements of genetic networks, providing intermediate connections among, e.g., spatially removed elements (Janes & Lauffenberger, 2013). As shown below, it is clear that ATP-binding cassette (ABC) transporters at the blood–brain barrier respond to both genomic and nongenomic signals, resulting in changes in protein expression and activity (genomic) and in transport activity but not in protein expression (nongenomic or metabolic).

2 ABC Transporters at the Blood–Brain Barrier


This review is focused on the regulation of blood–brain barrier transporters that are members of the ABC family and that handle foreign chemicals (xenobiotics). The human genome contains 49 genes encoding ABC transporters, divided into seven different subfamilies, A–G, based on their evolutionary divergence (Moitra & Dean, 2011). The defining molecular signature of ABC family members is the presence of several consensus sequences including two ATP-binding motifs (Walker A and Walker B), as well as the ABC signature C motif (ALSGGQ) (Kuhnline Sloan et al., 2012). ABC family members include proteins that function as ATP-driven transporters on both surface and intracellular membranes, ion channels, and receptors. Mutations in some of the ABC genes result in genetic disorders such as cystic fibrosis (ABCC7, CFTR, the Cystic Fibrosis Transmembrane Regulator, a chloride channel), Dubin Johnson's syndrome (ABCC2, MRP2, a metabolite and drug transporter), progressive familial intrahepatic cholestasis (ABCB11, BSEP, a bile salt efflux pump), and retinal degeneration (ABCA4, a lipid flippase) (Moitra & Dean, 2011).

For vertebrates, three ABC subfamilies, B, C, and G, contain...

Erscheint lt. Verlag 21.10.2014
Sprache englisch
Themenwelt Medizin / Pharmazie Gesundheitsfachberufe
Medizin / Pharmazie Medizinische Fachgebiete Pharmakologie / Pharmakotherapie
ISBN-10 0-12-800338-3 / 0128003383
ISBN-13 978-0-12-800338-1 / 9780128003381
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 9,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich