Large Scale Renewable Power Generation (eBook)

Advances in Technologies for Generation, Transmission and Storage
eBook Download: PDF
2014 | 2014
XII, 462 Seiten
Springer Singapore (Verlag)
978-981-4585-30-9 (ISBN)

Lese- und Medienproben

Large Scale Renewable Power Generation -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book focuses on the issues of integrating large-scale renewable power generation into existing grids. The issues covered in this book include different types of renewable power generation along with their transmission and distribution, storage and protection. It also contains the development of medium voltage converters for step-up-transformer-less direct grid integration of renewable generation units, grid codes and resiliency analysis for large-scale renewable power generation, active power and frequency control and HVDC transmission. The emerging SMES technology for controlling and integrating large-scale renewable power systems is also discussed. Since the protection issues with large-scale distributed renewable power systems are different compared to the existing protection system for one way power flow, this book includes a new protection technique for renewable generators along with the inclusion of current status of smart grid. This book is a good reference for the researchers who are working the area of renewable power generation and smart grids.



Dr. Jahangir Hossain received his Ph.D. in Electrical and Electronics Engineering from the University of New South Wales, Australia. He is currently a lecturer in the Griffith School of Engineering, Griffith University, Gold Coast, Australia. Before joining Griffith University, he served as a research fellow in the School of Information Technology and Electrical Engineering, University of Queensland, Australia. His research interests are power systems, renewable energy integration and stabilization, voltage stability, micro grids, robust control, electrical machine, FACTS devices and energy storage systems.

Dr. Apel Mahmud received his PhD degree in Electrical Engineering from the University of New South Wales, Australia. He is currently a lecturer at Swinburne University of Technology, Australia. His research interests are dynamic stability of power systems, renewable energy integration, smart grids, nonlinear control theory and electrical machine.


This book focuses on the issues of integrating large-scale renewable power generation into existing grids. The issues covered in this book include different types of renewable power generation along with their transmission and distribution, storage and protection. It also contains the development of medium voltage converters for step-up-transformer-less direct grid integration of renewable generation units, grid codes and resiliency analysis for large-scale renewable power generation, active power and frequency control and HVDC transmission. The emerging SMES technology for controlling and integrating large-scale renewable power systems is also discussed. Since the protection issues with large-scale distributed renewable power systems are different compared to the existing protection system for one way power flow, this book includes a new protection technique for renewable generators along with the inclusion of current status of smart grid. This book is a good reference for the researchers who are working the area of renewable power generation and smart grids.

Dr. Jahangir Hossain received his Ph.D. in Electrical and Electronics Engineering from the University of New South Wales, Australia. He is currently a lecturer in the Griffith School of Engineering, Griffith University, Gold Coast, Australia. Before joining Griffith University, he served as a research fellow in the School of Information Technology and Electrical Engineering, University of Queensland, Australia. His research interests are power systems, renewable energy integration and stabilization, voltage stability, micro grids, robust control, electrical machine, FACTS devices and energy storage systems.Dr. Apel Mahmud received his PhD degree in Electrical Engineering from the University of New South Wales, Australia. He is currently a lecturer at Swinburne University of Technology, Australia. His research interests are dynamic stability of power systems, renewable energy integration, smart grids, nonlinear control theory and electrical machine.

Editorial Advisory Board 5
Preface 7
Contents 10
1 Taxonomy of Uncertainty Modeling Techniques in Renewable Energy System Studies 12
Abstract 12
1…Introduction 12
2…Probabilistic Approach 13
2.1 Monte Carlo Simulation 14
2.2 Monte Carlo Simulation 14
2.3 Scenario-Based Decision Making 16
3…Uncertainty Modeling of Wind Turbine Power Generation and Load 17
3.1 Wind Turbine Power Generation Modeling 17
3.2 Probabilistic Modeling of Load 18
3.3 Possibilistic Modeling of Load 18
4…Simulation Results 20
4.1 Monte Carlo Simulation 20
4.2 Point Estimate Method 21
4.3 Scenario Based 21
4.4 Hybrid Case 23
5…Future Research 26
6…Conclusion 26
Acknowledgments 26
References 27
2 Probabilistic Modeling and Statistical Characteristics of Aggregate Wind Power 29
Abstract 29
1…Introduction 29
2…General Characteristics of Aggregate Wind Power 30
2.1 Uncertainty of Aggregate Wind Power 31
2.2 Variability of Aggregate Wind Power 33
3…Individual Wind Plant Model 34
3.1 Probabilistic Wind Speed Model 34
3.2 Idealized Wind Turbine Power Curve 35
3.2.1 Below Cut-in Wind Speed /left( {v /lt v_{/rm{ci}} } /right) 36
3.2.2 Between Cut-in and Rated Wind Speed /left( {v_{/rm{ci}} /le v /lt v_{r} } /right) 36
3.2.3 Between Rated and Cut-out Wind Speed /left( {v_{r} /le v /lt v_{/rm{co}} } /right) 37
3.2.4 At and Above Cut-out Wind Speed /left( {v_{/rm{co}} /le v} /right) 37
3.3 Idealized Wind Plant Model 37
3.4 Non-idealized Wind Plant Modeling 40
4…Geographic Diversity 41
4.1 Theoretical Basis 42
4.2 Uncertainty and Variability Reduction 43
4.3 Correlation of Instantaneous Wind Power 44
4.4 Correlation of Wind Power Variation 45
4.5 Other Factors Influencing Correlation 45
4.6 Wind Power Dependency Structures 46
4.7 Multivariate Models and Simulation 48
4.8 Practical Considerations 48
5…Aggregate Wind Power Models 49
5.1 Instantaneous Aggregate Wind Power Model 49
5.2 Beta Distribution Parameter Selection 50
5.3 Aggregate Wind Power Variation Model 51
5.4 Laplace Distribution Parameter Selection 53
5.5 Influence of Variation Period 54
6…Statistical Characteristics of Aggregate Wind Power 54
6.1 Data Set Descriptions 55
6.2 Statistical Analysis of Uncertainty 56
6.3 Statistical Analysis of Variability 56
6.4 Effect of Capacity on Uncertainty and Variability 57
7…Conclusions 59
3 Conversion Efficiency Improvement in GaAs Solar Cells 62
Abstract 62
1…Introduction 63
1.1 Background of Solar Energy 63
2…Basic Structure Thin Film Solar Cell 65
3…Background of AR Coating and SWG Structure 67
3.1 Antireflection Coating 68
3.2 Moth’s-Eye Principle 69
3.2.1 SWG Structure 69
3.2.2 Geometric Shape of Nano-Gratings 71
4…Design of Nano-Grating Structures 72
5…FDTD Software for the Simulation of Nanostructures 72
5.1 The Basics of the FDTD Simulation Method 72
5.2 The Equations of 2D FDTD Method 74
5.2.1 TE Waves for FDTD Simulation 74
5.2.2 TM Waves for FDTD Simulation 75
5.3 Lorentz-Drude Model 76
5.3.1 Lorentz-Drude Model in Frequency Domain 76
5.3.2 Lorentz-Drude Model in Time Domain 77
6…Simulation Results and Discussion 78
7…Minimum Light Reflection for Different Nano-gratings 79
8…Conclusions 83
Acknowledgments 83
Reference 83
4 Emerging SMES Technology into Energy Storage Systems and Smart Grid Applications 85
Abstract 85
1…Introduction 85
2…Energy Storage Techniques 86
3…SMES Circuit and Control Techniques 88
3.1 Principle and Operation Theory 88
3.2 Principle of Control and Protection 92
3.3 Principle and Implementation of a Novel Digital Prediction Control Method 95
3.3.1 The Estimations of the Initial Current and Voltage Values by Linear Extrapolation Method 95
3.3.2 The Computations of the Critical Voltage Values by Chopper Circuit Equations 96
3.3.3 The Estimation of the State-Switching Time by Linear Interpolation Method 96
4…Experimental Verification and Characteristics 97
4.1 Experimental Prototype Design 97
4.2 Experimental Verifications and Comparisons 99
4.2.1 Analysis on the Energy Absorption Characteristics 99
4.2.2 Analysis on the Energy Compensation Characteristics 102
4.2.3 Analysis on the Energy Exchange Characteristics 104
5…Development Status of Worldwide SMES Devices 105
6…SMES Application Topologies and Performance Evaluations 108
6.1 Basic VSC and CSC Application Topologies 108
6.1.1 VSC-Based SMES 108
6.1.2 CSC-Based SMES 109
6.2 Integrated Application Topologies in Power Grids 110
6.2.1 Application Topologies in Distributed Generators and Micro Grids 110
6.2.2 Application Topologies in Transmission and Distribution Systems 111
6.2.3 Integrated Application Topologies in Smart Grids 113
6.3 Applications of SMES in Power Grids 114
6.3.1 Applications in Distributed Generators and Micro Grids 114
6.3.2 Applications in Flexible AC Transmission Systems 116
7…Prospective SMES Applications Toward Smart Grids 118
7.1 Application Solutions of SMES in the Modern Power Systems 118
7.1.1 Analysis on Daily Load Levelling 119
7.1.2 Analysis on Load Fluctuation Compensation 121
7.1.3 Analysis on Voltage Fluctuation Compensation 123
7.2 Application Prospects and Considerations of SMES in Future Smart Grid 124
7.2.1 Application Prospects of SMES in Future Smart Grids 124
7.2.2 Conceptual Design of a Superconducting DC Distribution Network with Superconducting DC Cable and SMES Technologies 127
Acknowledgments 129
References 129
5 Multilevel Converters for Step-Up-Transformer-Less Direct Integration of Renewable Generation Units with Medium Voltage Smart Microgrids 134
Abstract 134
1…Introduction 134
2…Multilevel Converter Topologies 136
2.1 Neutral Point Clamped Converter 139
2.2 Flying Capacitor Converter 141
2.3 Modular Multilevel Cascaded Converter 142
3…Selection of Multilevel Converter Topology 143
4…Selection of Number of Converter Levels 146
5…FPGA-Based Switching Controller 149
6…High-Frequency Link MMC Converter 151
7…Conclusion 154
References 155
6 A Review of Interconnection Rules for Large-Scale Renewable Power Generation 157
Abstract 157
1…Introduction 158
2…Necessity of Grid Connection Rules 159
2.1 Variability and Uncertainty of Resources 159
2.2 Location of Plant 160
2.3 Generation Technologies and System Condition 160
3…Grid Codes in Study 161
4…Principal Technical Issues in Grid Interconnection 161
4.1 Static Regulations 162
4.1.1 Reactive Power and Voltage Regulation 162
4.1.2 Continuous Voltage Operating Range 165
4.1.3 Frequency Operating Requirement 166
4.2 Power Quality 167
4.3 Dynamic Regulations During and After Disturbances 169
4.3.1 Low Voltage Ride Through 169
4.3.2 High Voltage Ride Through 170
4.3.3 Reactive Current Injection During Fault 171
4.3.4 Repetition of Faults 172
5…Grid Codes for Large-Scale PV Plants 173
6…Summary and Future Trend 173
7…Conclusions 175
References 175
7 Resiliency Analysis of Large-Scale Renewable Enriched Power Grid: A Network Percolation-Based Approach 178
Abstract 178
1…Introduction 179
2…System Model 180
3…Percolation and Network Resiliency 181
4…Measure of Connectivity-Degree Centrality 186
5…Measure of Independence-Closeness Centrality 187
6…Measure of Control of Communication-Betweenness Centrality 189
7…Simulation Results 190
8…Chapter Summary 195
References 195
8 Frequency Control and Inertial Response Schemes for the Future Power Networks 197
Abstract 197
1…Introduction 198
2…System Frequency Response 202
3…Frequency Response of Wind Power 207
4…Controller Used for Frequency Response in Wind Power 210
4.1 Wind Turbine Level Controllers 210
4.1.1 Inertia Controller 210
4.1.2 Releasing ‘‘Hidden Inertia’’ 214
4.1.3 Fast Power Reserve Emulation 214
4.2 Governor Response Controller 215
4.2.1 De-loading Control 217
4.3 Wind Farm Level Controller 220
4.4 Power System Level Controller 222
5…Synthetic or Artificial Inertia 224
6…Enabling the HVDC System to Deliver Frequency Response 226
7…Conclusions 232
References 232
9 Active Power and Frequency Control Considering Large-Scale RES 236
Abstract 236
1…Introduction 237
2…Conventional Scenario in Active Power Control 238
2.1 Primary Active Power/Frequency Control 238
2.2 Supplementary Higher Level Control 238
2.2.1 Area Control Error 238
2.2.2 Area Participation Factor 239
2.2.3 Control of Interconnected Multi-Area Systems 240
2.3 Multi Machine Four-Area Power System Example 241
3…Adapted Scenarios 243
3.1 Power/Frequency Control in Market Environment 244
3.1.1 AGC Market Review 244
3.1.2 Active Power/Frequency Control in Market 245
3.1.3 Multi Machine Two-Area Example Considering Power Market Contracts 247
3.2 Power/Frequency Control with Res Penetrations 249
3.2.1 Adapted Active Power Control Models 249
Characteristic of WTG’s Output Power 252
Characteristic of PV Output Power 252
3.2.2 Multimachine Two-Area Example Considering RES Effects 252
Simulation of Two-Area Power System with PV Power Plant 253
Simulation of Two-Area Power System with Both PV and Wind Power Plants 258
3.3 Power/Frequency Control with AC/DC Transmission Lines for Interconnected Systems 258
3.3.1 Modified Model 258
Supplementary Power Modulation Controller for the HVDC Link 259
Parameters Tuning for SPMC 261
3.3.2 Multi Machine Two-Area Power System Example 262
4…Application of Advanced Control Concepts in Active Power Control 263
4.1 Design of Advanced LQR Control for LFC System 264
4.1.1 Overview of Optimal Output Feedback 264
4.1.2 AWPSO Algorithm 266
4.1.3 Imperialist Competitive Algorithm 267
4.2 General Examples for Advanced Control Applications 269
5…Summary 271
A.x(118). Appendix A 271
References 273
10 Impact of Large Penetration of Correlated Wind Generation on Power System Reliability 275
Abstract 275
1…Introduction 276
2…Reliability Evaluation by Non-sequential MCS 277
3…Correlated Time-Varying Elements 277
4…Model for Time-Varying Variables Representation 279
5…Results 282
5.1 Case 1: Variable Load and No Wind Farm 283
5.2 Case 3: Constrained Transmission Network 285
5.3 Case 4: Three Wind Farms and Variable Load 287
6…Conclusions 288
References 288
11 HVDC Transmission for Offshore Wind Farms 290
Abstract 290
1…Introduction 290
2…Challenges of Offshore Wind Energy 292
3…Offshore Grid: AC Versus DC Topologies 293
4…Different Concepts for the Energy Conversion System in Offshore Wind Energy 295
5…Line-Commutated Converters for HVDC Transmission in Offshore Wind Energy 298
6…Voltage Source Converter for HVDC Transmission in Offshore Wind Energy 299
7…New Trends on HVDC Transmission for Offshore Wind Energy 301
7.1 Hybrid Topologies 301
7.2 Modular Multilevel Converter 304
8…Cable Technologies 307
9…Final Remarks 308
References 308
12 Wind Farm Protection 312
Abstract 312
1…Introduction 313
2…Conventional Generator Layout 313
3…Wind Farm Layout 313
4…Wind Farm and Conventional Generation Protection 314
5…FRT Criteria, Protection, and Control Coordination 315
6…Case Study 317
6.1 Network Under Study 317
7…Wind Integration Dynamic Fault Studies 318
7.1 Model Order Impact on Fault Current or Voltage 318
7.2 Time Step Impact on Fault Current or Voltage 318
7.3 Crowbar Impact on Fault Current or Voltage 319
7.4 Comparative Fault Analysis for WTGs 320
8…Significance of Results 322
8.1 Type-1 and 2 WTGsProtection Performance 325
8.2 Type-3 WTG Protection Performance 325
8.3 Type-4 WTG Protection Performance 326
8.4 Summary of WTG Protection Performance 327
9…Summary 327
A.x(118). 10…Appendix A: 328
References 329
13 Wind Power Plants and FACTS Devices’ Influence on the Performance of Distance Relays 331
Abstract 331
1…Introduction 332
2…Distance Relay Modeling 334
3…Impact of Converter-Based Systems in the Performance of Distance Relay 340
3.1 Wind Power Plant (DFIG Scheme) 340
3.2 Test System 341
3.2.1 Measured Signals 342
3.3 STATCOM 344
3.3.1 Test System 344
3.3.2 Measured Signals 344
3.4 UPFC 345
3.4.1 Test System 347
3.4.2 Measured Signals 348
3.5 Series Compensation 349
3.5.1 Test System 350
3.5.2 Measured Signals 350
3.6 Effect of Input Signals with Nonfiltered Frequency Components in Distance Relay Impedance Estimation 352
3.6.1 Wind Power Plant (DFIG Scheme) 352
3.6.2 STATCOM 353
3.6.3 UPFC 354
3.6.4 Series Compensation 354
3.6.5 Real Fault Event I (Wind Power Plant) 354
3.6.6 Real Fault Event II (Series Compensation) 356
4…Proposed Distance Relay Algorithm Using Prony Method as a Filtering Technique 357
4.1 Prony Method 357
4.1.1 Formulation 359
5…Analysis of Proposed Distance Relay Algorithms 359
5.1 Reach Error Compensation (Wind Power Plant) 360
5.2 Reach Error Compensation (STATCOM) 361
5.3 Reach Error Compensation (UPFC) 361
5.4 Reach Error Compensation (Series Compensation) 361
5.5 Reach Error Compensation (Real Fault Events) 363
5.5.1 Real Fault Event I (Wind Power Plant) 363
5.5.2 Real Fault Event II (Series Compensation) 363
6…Summary of Results 365
7…Conclusions 365
References 365
14 Protection Schemes for Meshed VSC-HVDC Transmission Systems for Large-Scale Offshore Wind Farms 368
Abstract 368
1…Introduction 369
2…Multiterminal Meshed DC Wind Farm Network 370
2.1 Meshed Multiterminal DC Wind Farm Topology 370
2.2 Supergrid Section for Protection Test Study 371
3…DC Fault Analysis for Large-Scale Meshed Systems 373
3.1 Appropriate Cable Modeling for DC Fault Analysis 373
3.2 DC Bus Fault 375
4…Protection Scheme for Meshed DC Systems 376
4.1 High-Power DC Switchgear Allocation 376
4.2 DC CB Relay Coordination Relations 379
4.3 Protection Scheme 380
4.4 Protective Selection without Relay Communication 382
5…DC Wind Farm Protection Simulation Results 385
5.1 DC Radial Cable Short-Circuit/Ground Fault Condition 385
5.2 DC Loop Cable Short-Circuit/Ground Fault Condition 388
5.3 DC Bus Short-Circuit/Ground Fault Condition 388
5.4 Cable Modeling Comparison 390
6…Conclusions 391
References 392
15 Control of Emerging Brushless Doubly-Fed Reluctance Wind Turbine Generators 393
Abstract 393
1…Introduction 393
2…Dynamic Model 395
3…Controller Design 397
4…Control Principles 400
4.1 Vector Control 400
4.2 Field-Oriented Control 401
4.3 BDFRG Turbine Operating Conditions 402
4.4 Optimal Control Strategy 402
4.5 Wind Turbine Characteristics 403
5…Preliminary Results 404
6…Conclusions 407
References 408
16 Energy Hub Management with Intermittent Wind Power 410
Abstract 410
1…Introduction 411
1.1 Problem Statement 411
1.2 Review of Related Works 411
2…Risk Management 413
3…Problem Formulation 415
3.1 Energy Hub Modeling 415
3.2 Thermal Unit Constraints 417
3.3 Critical Uncertainty Modeling of Wind Power Generation, Electricity Prices, and Demands 418
3.4 Decision Variables 421
3.5 Objective Function 421
4…Simulation Results 422
4.1 Data 422
4.2 Pareto Optimal Front Determination 423
4.3 Final Solution Selection 426
5…Discussion 429
6…Conclusion 431
A.x(118). Appendix-I 431
A.x(118).0 Scenario Reduction Technique 431
A.x(118). Appendix-II 432
A.x(118).0 Pareto Optimality 432
A.x(118). 9…Appendix-III 432
A.x(118).0 Fuzzy Satisfying Method 432
References 433
17 Adopting the IEC Common Information Model to Enable Smart Grid Interoperability and Knowledge Representation Processes 436
Abstract 436
1…Introduction 437
2…The Smart Grid Concept 438
3…The Theory of Interoperability 439
3.1 Systems Engineering Interoperability 443
3.2 Interoperability and Service-Oriented Architecture 444
3.3 Interoperability and CIM 445
4…Use Cases 446
5…Smart Grid Standards Architecture 446
6…The IEC Common Information Model (CIM) 449
6.1 The CIM as Ontology for the Electrical Power Domain 451
6.2 Harmonization of the CIM with Other Standards 452
7…Information Integration and Knowledge Representation 452
8…Conclusion 454
References 455

Erscheint lt. Verlag 28.1.2014
Reihe/Serie Green Energy and Technology
Zusatzinfo XII, 462 p. 285 illus., 170 illus. in color.
Verlagsort Singapore
Sprache englisch
Themenwelt Naturwissenschaften
Technik Elektrotechnik / Energietechnik
Wirtschaft
Schlagworte International Grid Codes • Nanocrystalline Cells • Non-toxic Materials • Polymer Cells • Renewable Power Generation • Smart Grid • Solar Cell Technologies • Transmission and Storage • Voltage Ride-through Compliances • Wind Power Generation Systems
ISBN-10 981-4585-30-0 / 9814585300
ISBN-13 978-981-4585-30-9 / 9789814585309
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 19,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99