Learning in Non-Stationary Environments (eBook)
XII, 440 Seiten
Springer New York (Verlag)
978-1-4419-8020-5 (ISBN)
Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.
Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy.
Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations.
This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research.
Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dynamic learning methods serve as keystones for achieving models with high accuracy. Rather than rely on a mathematical theorem/proof style, the editors highlight numerous figures, tables, examples and applications, together with their explanations. This approach offers a useful basis for further investigation and fresh ideas and motivates and inspires newcomers to explore this promising and still emerging field of research.
Prologue.- Part I: Dynamic Methods for Unsupervised Learning Problems.- Incremental Statistical Measures.- A Granular Description of Data: A Study in Evolvable Systems.- Incremental Spectral Clustering.- Part II: Dynamic Methods for Supervised Classification Problems.- Semi-Supervised Dynamic Fuzzy K-Nearest Neighbors.- Making Early Predictions of the Accuracy of Machine Learning Classifiers.- Incremental Classifier Fusion and its Applications in Industrial Monotiroing and Diagnostics.- Instance-Based Classification and Regression on Data Streams.- Part III: Dynamic Methods for Supervised Regression Problems.- Flexible Evolving Fuzzy Inference Systems from Data Streams (FLEXFIS++).- Sequential Adaptive Fuzzy Inference System for Function Approximation Problems.- Interval Approach for Evolving Granular System Modeling.- Part IV: Applications of Learning in Non-Stationary Environments.- Dynamic Learning in Multiple Time-Series in a Non-Stationary Environmenty.- Optimizing Feature Calculation in Adaptive Machine Vision Systems.- On-line Quality Contol with Flexible Evolving Fuzzy Systems.- Identification of a Class of Hybrid Dynamic Systems.
Erscheint lt. Verlag | 13.4.2012 |
---|---|
Zusatzinfo | XII, 440 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Technik | |
Schlagworte | adaptive modeling • Data streams • drifts and shifts • dynamic dimension reduction • Dynamic learning • huge data bases • incremental learning • knowledge extraction • on-line industrial applications • on-line modeling |
ISBN-10 | 1-4419-8020-2 / 1441980202 |
ISBN-13 | 978-1-4419-8020-5 / 9781441980205 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Größe: 10,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich