Grundkurs Funktionentheorie (eBook)
X, 334 Seiten
Spektrum Akademischer Verlag
978-3-8274-2235-4 (ISBN)
Der „Grundkurs Funktionentheorie" präsentiert in seinen ersten drei Kapiteln (Holomorphe Funktionen, Integration im Komplexen und isolierte Singularitäten) ohne Umwege die wichtigsten Elemente der komplexen Analysis von einer Veränderlichen, vom Rechnen mit komplexen Zahlen über die Grundzüge der verblüffend wirkungsvollen Cauchy-Theorie bis hin zum Residuensatz.
Ausgerüstet mit diesen Werkzeugen erfährt der Leser im vierten Kapitel, wie analytische Funktionen mit vorgegebenen Nullstellen und Polstellen konstruiert werden, als Beispiele dafür werden die Gamma-Funktion und die elliptischen Funktionen behandelt. Konforme Abbildungen werden schon sehr früh eingeführt und dann mit den immer perfekter werdenden Methoden weiter vertieft. Das abschließende fünfte Kapitel über geometrische Funktionentheorie stellt Zusammenhänge zwischen konformen Abbildungen und der Topologie ebener Gebiete her und zeigt, wie analytische Funktionen mit Hilfe des Spiegelungsprinzips auf immer größere Gebiete fortgesetzt werden können.
Wie im Grundkurs Analysis wird viel Wert auf die didaktische Ausarbeitung gelegt, vor allem aber begleiten den Text von Anfang an Ausflüge in die Welt der Anwendungen. Zahlreiche Übungsaufgaben und Illustrationen runden das Bild ab.
Das Buch wendet sich an Diplom-, Bachelor- und Masterstudierende in Mathematik, Naturwissenschaften und Informationstechnologie. Es ist geeignet zum Selbststudium, als Begleitlektüre und zur Prüfungsvorbereitung.
Prof. Dr. Klaus Fritzsche forscht und lehrt Mathematik an der Universität Wuppertal mit dem Schwerpunkt „Komplexe Analysis von mehreren Veränderlichen". Von Anfang an wirkte er beim Bologna-Prozess mit, also bei der Realisierung von Bachelor- und Master-Studiengängen.
Vorwort.- I Holomorphe Funktionen.- I.1 Die komplexen Zahlen. I.2 Komplex differenzierbare Funktionen. I.3 Die Cauchy-Riemann’schen Differentialgleichungen. I.4 Der komplexe Logarithmus. I.5 Anwendungen.- II Integration im Komplexen.- II.1 Komplexe Kurvenintegrale. II.2 Der Cauchy’sche Integralsatz. II.3 Der Entwicklungssatz. II.4 Anwendungen.- III Isolierte Singularitäten.- III.1 Laurentreihen. III.2 Umlaufszahlen. III.3 Der Residuensatz. III.4 Anwendungen.- IV Konforme Abbildungen.- IV.1 Möbius-Transformationen. IV.2 Normale Familien. IV.3 Das Spiegelungsprinzip. IV.4 Anwendungen.- V Meromorphe Funktionen.- V.1 Der Satz von Mittag-Leffler. V.2 Der Weierstraß’sche Produktsatz. V.3 Die Gamma-Funktion. V.4 Elliptische Funktionen. V.5 Anwendungen.- VI Ergänzungen und Ausblicke.- VI.1 Der Riemann’sche Abbildungssatz. VI.2 Randverhalten und holomorphe Fortsetzung. VI.3 Runge-Approximation. VI.4 Die Zeta-Funktion. VI.5 Komplexe Analysis von mehreren Veränderlichen. VI.6 Elliptische Kurven.- VII Anhang: Analytische und topologische Grundlagen.- Literaturverzeichnis.- Index
Erscheint lt. Verlag | 31.12.2008 |
---|---|
Verlagsort | Heidelberg |
Sprache | deutsch |
Themenwelt | Mathematik / Informatik ► Mathematik |
Technik | |
Schlagworte | Analysis • Differenzialgleichung • Funktionentheorie • Komplexe Analysis • komplexe Funktionen • Logarithmus • Residuensatz |
ISBN-10 | 3-8274-2235-3 / 3827422353 |
ISBN-13 | 978-3-8274-2235-4 / 9783827422354 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Größe: 3,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich