Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration (eBook)
540 Seiten
Elsevier Science (Verlag)
978-0-08-047059-7 (ISBN)
You don't need a background in fuzzy modeling or genetic algorithms to benefit, for this book provides it, along with detailed instruction in methods that you can immediately put to work in your own projects. The author provides many diverse examples and also an extended example in which evolutionary strategies are used to create a complex scheduling system.
* Written to provide analysts, engineers, and managers with the background and specific instruction needed to develop and implement more effective data mining systems.
* Helps you to understand the trade-offs implicit in various models and model architectures.
* Provides extensive coverage of fuzzy SQL querying, fuzzy clustering, and fuzzy rule induction.
* Lays out a roadmap for exploring data, selecting model system measures, organizing adaptive feedback loops, selecting a model configuration, implementing a working model, and validating the final model.
* In an extended example, applies evolutionary programming techniques to solve a complicated scheduling problem.
* Presents examples in C, C++, Java, and easy-to-understand pseudo-code.
* Extensive online component, including sample code and a complete data mining workbench.
Earl founded and serves as President of, Scianta Intelligence, a next generation machine intelligence and knowledge exploration company. He is a futurist, author, management consultant, and educator involved in discovering the epistemology of advanced intelligent systems, the redefinition of the machine mind, and, as a pioneer of Internet-based technologies, the way in which evolving inter-connected virtual worlds will affect the sociology of business and culture in the near and far future.
Earl has over thirty years experience in managing and participating in the software development process at the system as well as tightly integrated application level. In the area of advanced machine intelligence technologies, Earl is a recognized expert in fuzzy logic, and adaptive fuzzy systems as they are applied to information and decision theory. He has pioneered the integration of fuzzy neural systems with genetic algorithms and case-based reasoning. As an industry observer and futurist, Earl has written and talked extensively on the philosophy of the Response to Change, the nature of Emergent Intelligence, and the Meaning of Information Entropy in Mind and Machine.
Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration is a handbook for analysts, engineers, and managers involved in developing data mining models in business and government. As you'll discover, fuzzy systems are extraordinarily valuable tools for representing and manipulating all kinds of data, and genetic algorithms and evolutionary programming techniques drawn from biology provide the most effective means for designing and tuning these systems. You don't need a background in fuzzy modeling or genetic algorithms to benefit, for this book provides it, along with detailed instruction in methods that you can immediately put to work in your own projects. The author provides many diverse examples and also an extended example in which evolutionary strategies are used to create a complex scheduling system. - Written to provide analysts, engineers, and managers with the background and specific instruction needed to develop and implement more effective data mining systems- Helps you to understand the trade-offs implicit in various models and model architectures- Provides extensive coverage of fuzzy SQL querying, fuzzy clustering, and fuzzy rule induction- Lays out a roadmap for exploring data, selecting model system measures, organizing adaptive feedback loops, selecting a model configuration, implementing a working model, and validating the final model- In an extended example, applies evolutionary programming techniques to solve a complicated scheduling problem- Presents examples in C, C++, Java, and easy-to-understand pseudo-code- Extensive online component, including sample code and a complete data mining workbench
Erscheint lt. Verlag | 24.2.2005 |
---|---|
Sprache | englisch |
Themenwelt | Sachbuch/Ratgeber |
Mathematik / Informatik ► Informatik ► Datenbanken | |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Sozialwissenschaften ► Kommunikation / Medien ► Buchhandel / Bibliothekswesen | |
ISBN-10 | 0-08-047059-9 / 0080470599 |
ISBN-13 | 978-0-08-047059-7 / 9780080470597 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich