Selected papers from the 2nd International Symposium on UAVs, Reno, U.S.A. June 8-10, 2009 (eBook)

eBook Download: PDF
2011 | 2010
VI, 529 Seiten
Springer Netherlands (Verlag)
978-90-481-8764-5 (ISBN)

Lese- und Medienproben

Selected papers from the 2nd International Symposium on UAVs, Reno, U.S.A. June 8-10, 2009 -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
In the last decade, signi?cant changes have occurred in the ?eld of vehicle motion planning, and for UAVs in particular. UAV motion planning is especially dif?cult due to several complexities not considered by earlier planning strategies: the - creased importance of differential constraints, atmospheric turbulence which makes it impossible to follow a pre-computed plan precisely, uncertainty in the vehicle state, and limited knowledge about the environment due to limited sensor capabilities. These differences have motivated the increased use of feedback and other control engineering techniques for motion planning. The lack of exact algorithms for these problems and dif?culty inherent in characterizing approximation algorithms makes it impractical to determine algorithm time complexity, completeness, and even soundness. This gap has not yet been addressed by statistical characterization of experimental performance of algorithms and benchmarking. Because of this overall lack of knowledge, it is dif?cult to design a guidance system, let alone choose the algorithm. Throughout this paper we keep in mind some of the general characteristics and requirements pertaining to UAVs. A UAV is typically modeled as having velocity and acceleration constraints (and potentially the higher-order differential constraints associated with the equations of motion), and the objective is to guide the vehicle towards a goal through an obstacle ?eld. A UAV guidance problem is typically characterized by a three-dimensional problem space, limited information about the environment, on-board sensors with limited range, speed and acceleration constraints, and uncertainty in vehicle state and sensor data.
In the last decade, signi?cant changes have occurred in the ?eld of vehicle motion planning, and for UAVs in particular. UAV motion planning is especially dif?cult due to several complexities not considered by earlier planning strategies: the - creased importance of differential constraints, atmospheric turbulence which makes it impossible to follow a pre-computed plan precisely, uncertainty in the vehicle state, and limited knowledge about the environment due to limited sensor capabilities. These differences have motivated the increased use of feedback and other control engineering techniques for motion planning. The lack of exact algorithms for these problems and dif?culty inherent in characterizing approximation algorithms makes it impractical to determine algorithm time complexity, completeness, and even soundness. This gap has not yet been addressed by statistical characterization of experimental performance of algorithms and benchmarking. Because of this overall lack of knowledge, it is dif?cult to design a guidance system, let alone choose the algorithm. Throughout this paper we keep in mind some of the general characteristics and requirements pertaining to UAVs. A UAV is typically modeled as having velocity and acceleration constraints (and potentially the higher-order differential constraints associated with the equations of motion), and the objective is to guide the vehicle towards a goal through an obstacle ?eld. A UAV guidance problem is typically characterized by a three-dimensional problem space, limited information about the environment, on-board sensors with limited range, speed and acceleration constraints, and uncertainty in vehicle state and sensor data.

Provisional Table of Contents, August 2009:
A: UAS Modeling, Control and Identification: J. Kim, M. S. Kang, S. Park: Accurate Modeling and Robust Hovering Control for a Quad–rotor VTOL Aircraft; D. Schafroth, C. Bermes, S. Bouabdallah, R. Siegwart: Modeling and System Identification of the muFly Micro Helicopter; E. Rondon, S. Salazar, J. Escareno, R. Lozano, A. Malo-Tamayo: Vision-Based Position Control of a Two-Rotor VTOL mini UAV; B: UAS Navigation, Path Planning and Tracking: C. Goerzen, Z. Kong, B. Mettler: A Survey of Motion Planning Algorithms from the Perspective of Autonomous UAV Guidance; K. Yang, S. K. Gan, S. Sukkarieh: An Efficient Path Planning and Control Algorithm for an RUAV in an Unknown and Cluttered Environment; A. A. Neto, D. G. Macharet, M. F. M. Campos: On the Generation of Trajectories for Multiple UAVs in Environments with Obstacles; E. Koyuncu, N. K. Ure, G. Inalhan: Integration of Path/Maneuver Planning in Complex Environments for Agile Maneuvering UCAVs; M. Kontitsis, K. Valavanis: A Cost-Effective Tracking System for Small Unmanned Aerial Systems; C: UAS Vision and Vision-Based Systems; R. S. Holt, R. W. Beard: Vision-Based Road-Following Using Proportional Navigation; S. Huh, D. H. Shim: A Vision-based Automatic Landing Method for Fixed-wing UAVs; A. Cesetti, E. Frontoni, A. Mancini, P. Zingaretti, S. Longhi: A Vision-based Guidance System for UAVs Navigation and Safe Landing using Natural Landmarks; F. Andert, F. M. Adolf, L. Goormann, J. S. Dittrich: Autonomous Vision-Based Helicopter Flights through Obstacle Gates; D: Landing and Forced Landing; K. W. Sevcik, N. Kuntz, P. Y. Oh: Exploring the Effect of Obscurants on Safe Landing Zone Identification; K. E. Wenzel, P. Rosset, A. Zell: Low-Cost Visual Tracking of a Landing Place and Hovering Flight Control with a Microcontroller; A. L. Desbiens, M. Cutkosky: Landing and Perching on Vertical Surfaces with Microspines for Small Unmanned Air Vehicles; P. Eng, L.Mejias, X. Liu: Automating Human Thought Processes for a UAV Forced Landing; K. Dalamagkidis, K. Valavanis, L. Piegl: Autonomous Autorotation of Unmanned Rotorcraft using Nonlinear Model Predictive Control; E: Simulation Platforms and Testbeds: I. Maza, F. Caballero, R. Molina, N. Pena, A. Ollero: Multimodal Interface Technologies for UAV Ground Control Stations: A Comparative Analysis; R. Garcia, L. Barnes: Multi-UAV Simulator Utilizing X-Plane; J. Saunders, R. Beard: UAV Flight Simulation with Hardware-in-the-loop Testing and Vision Generation; F: UAS Applications: I. Maza, K. Kondak, M. Bernard, A. Ollero: Multi-UAV Cooperation and Control for Load Transportation and Deployment; S. Erhard, K. E. Wenzel, A. Zell: Flyphone: Visual Self-Localization Using a Mobile Phone as Onboard Image Processor on a Quadrocopter; A. H. Goktogan, S. Sukkarieh, M. Bryson, J. Randle, T. Lupton, C. Hung: Using Rotary-Wing Unmanned Aerial Vehicles for Aquatic Weed Surveillance and Management; J. T. Hing, K. W. Sevcik, P. Y. Oh: Development and Evaluation of a Chase View for UAV Operations in Cluttered Environments; M. Aksugur, G. Inalhan: Design Methodology of a Hybrid Propulsion Driven Electric Powered Miniature Tailsitter Unmanned Aerial Vehicle.

Erscheint lt. Verlag 11.4.2011
Zusatzinfo VI, 529 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Naturwissenschaften
Technik Elektrotechnik / Energietechnik
Technik Luft- / Raumfahrttechnik
Schlagworte Autonomous Flights • Equivalent Levels of Safety • Microcontroller • mission planning • Model • Modeling • Model Predictive Control • Navigation • sensors and sensor fusion • Simulation • System • System Identification • UAS Reliability Analysis • unmanned aircraft systems
ISBN-10 90-481-8764-8 / 9048187648
ISBN-13 978-90-481-8764-5 / 9789048187645
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 16,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
A practical guide to probabilistic modeling

von Osvaldo Martin

eBook Download (2024)
Packt Publishing Limited (Verlag)
35,99
A comprehensive guide to decoding blockchain data with data analysis …

von Gabriela Castillo Areco

eBook Download (2023)
Packt Publishing (Verlag)
32,39