Optimal Control of Wind Energy Systems (eBook)

Towards a Global Approach
eBook Download: PDF
2008 | 1. Auflage
XXII, 286 Seiten
Springer London (Verlag)
978-1-84800-080-3 (ISBN)

Lese- und Medienproben

Optimal Control of Wind Energy Systems -  Antoneta Iuliana Bratcu,  Emil Ceanga,  Nicolaos-Antonio Cutululis,  Iulian Munteanu
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Covering all aspects of this important topic, this work presents a review of the main control issues in wind power generation, offering a unified picture of the issues surrounding its optimal control. Discussion is focused on a global dynamic optimization approach to wind power systems using a set of optimization criteria which comply with a comprehensive group of requirements including: energy conversion efficiency; mechanical reliability; and quality of the energy provided.



The authors are with the Advanced Control System Research Centre at 'Dunarea de Jos' University of Galati in Romania. Their research interests are in the domain of static and dynamic optimizations, with a focus on dynamic system optimal control. The interest in the control of the wind energy conversion systems dates back to 1993.

Iulian Munteanu received a B.Eng. degree in applied electronics from 'Dunarea de Jos' University of Galati in Romania in 1996, a M.Sc. degree in instrumentation and control from Université du Havre in France in 1997 and a Ph.D. degree in automatic control systems from 'Dunarea de Jos' University of Galati in Romania in 2006, by defending a dissertation on the optimal control of wind power systems. From 1998 he is with the Department of Electronics and Telecommunications from 'Dunarea de Jos' University of Galati in Romania. Between 2000 and 2005 he has had three doctoral stages at Laboratoire d'Électrotechnique de Grenoble in France, where he has worked on controlling the variable-speed asynchronous-machine-based wind power systems. He has authored and co-authored 1 book, 7 research reports, about 10 papers at international conferences and 5 papers in international journals. At the present he is a post-doctoral researcher at Grenoble Génie Électrique Laboratory in France.

Antoneta Iuliana Bratcu received a M.Sc. degree in electrical engineering from 'Dunarea de Jos University of Galati in Romania in 1996 and a doctoral degree in automatic control and computer science from Université de Franche-Comté de Besançon in France in 2001. Her research interests include both discrete and continuous optimization. Between 2002 and 2005 she has had two post-doctoral stages respectively at Université de Technologie de Troyes and École Nationale Supérieure des Mines de Saint Étienne in France. She has authored and co-authored 2 books, 3 research reports, more than 25 papers at international conferences and 9 papers in international journals. In 2007 she joined the Department of Electrical Energy Conversion Systems from 'Dunarea de Jos' University of Galati in Romania, where she is an associate professor. She is presently working as a post-doctoral researcher at Grenoble Génie Électrique Laboratory in France.

Nicolas-Antonio Cutululis received a M.Sc. degree in advanced automatic control and artificial intelligence and a Ph.D. degree in automatic control systems, both from 'Dunarea de Jos' University of Galati in Romania in 1999 and 2005 respectively. His Ph.D. dissertation thesis concerns the design of control strategies for hybrid wind energy conversion systems. He has authored and co-authored 1 book, 5 research reports, 5 papers at international conferences and 7 papers in international journals. From 1999 he joined the Department of Electrical Energy Conversion Systems at 'Dunarea de Jos University of Galati in Romania. At the present he is a scientist with the Wind Energy Department at Risø National Laboratory in Denmark.

Emil Ceanga received a M.Sc. degree in electronics and a Ph.D. degree in automatic control systems, both from Bucharest Polytechnic Institute in Romania, in 1961 and 1969 respectively. Between 1993 and 2004 he has been five times visiting professor at Groupe de Recherche en Automatique et Électrotechnique at Université du Havre in France and one time visiting professor at Université du Québec à Rimouski in Canada. In 2004 he received the distinction 'Palmes Académiques' from the French Government. He has advised 15 Ph.D. dissertations and has authored and co-authored 15 books and more than 130 papers at international conferences and in international journals. Between 2001 and 2006 he was Director of the Advanced Control System Research Centre at 'Dunarea de Jos University of Galati in Romania. He is presently a professor of electrical engineering at the Department of Electrical Energy Conversion Systems at the same university.


Optimal Control of Wind Energy Systems is a thorough review of the main control issues in wind power generation, covering many industrial application problems. A series of control techniques are analyzed and compared, starting with the classical ones, like PI control and gain-scheduling techniques, and continuing with some modern ones: sliding mode techniques, feedback linearization control and robust control. Discussion is directed at identifying the benefits of a global dynamic optimization approach to wind power systems. The main results are presented and illustrated by case studies and MATLAB(R)/Simulink(R) simulation. The corresponding programmes and block diagrams can be downloaded from the book's page at springer.com. For some of the case studies presented, real-time simulation results are available. Control engineers, researchers and graduate students interested in learning and applying systematic optimization procedures to wind power systems will find this a most useful guide to the field.

The authors are with the Advanced Control System Research Centre at "Dunarea de Jos" University of Galati in Romania. Their research interests are in the domain of static and dynamic optimizations, with a focus on dynamic system optimal control. The interest in the control of the wind energy conversion systems dates back to 1993.Iulian Munteanu received a B.Eng. degree in applied electronics from "Dunarea de Jos" University of Galati in Romania in 1996, a M.Sc. degree in instrumentation and control from Université du Havre in France in 1997 and a Ph.D. degree in automatic control systems from "Dunarea de Jos" University of Galati in Romania in 2006, by defending a dissertation on the optimal control of wind power systems. From 1998 he is with the Department of Electronics and Telecommunications from "Dunarea de Jos" University of Galati in Romania. Between 2000 and 2005 he has had three doctoral stages at Laboratoire d'Électrotechnique de Grenoble in France, where he has worked on controlling the variable-speed asynchronous-machine-based wind power systems. He has authored and co-authored 1 book, 7 research reports, about 10 papers at international conferences and 5 papers in international journals. At the present he is a post-doctoral researcher at Grenoble Génie Électrique Laboratory in France.Antoneta Iuliana Bratcu received a M.Sc. degree in electrical engineering from "Dunarea de Jos University of Galati in Romania in 1996 and a doctoral degree in automatic control and computer science from Université de Franche-Comté de Besançon in France in 2001. Her research interests include both discrete and continuous optimization. Between 2002 and 2005 she has had two post-doctoral stages respectively at Université de Technologie de Troyes and École Nationale Supérieure des Mines de Saint Étienne in France. She has authored and co-authored 2 books, 3 research reports, more than 25 papers at international conferences and 9 papers in international journals. In 2007 she joined the Department of Electrical Energy Conversion Systems from "Dunarea de Jos" University of Galati in Romania, where she is an associate professor. She is presently working as a post-doctoral researcher at Grenoble Génie Électrique Laboratory in France.Nicolas-Antonio Cutululis received a M.Sc. degree in advanced automatic control and artificial intelligence and a Ph.D. degree in automatic control systems, both from "Dunarea de Jos" University of Galati in Romania in 1999 and 2005 respectively. His Ph.D. dissertation thesis concerns the design of control strategies for hybrid wind energy conversion systems. He has authored and co-authored 1 book, 5 research reports, 5 papers at international conferences and 7 papers in international journals. From 1999 he joined the Department of Electrical Energy Conversion Systems at "Dunarea de Jos University of Galati in Romania. At the present he is a scientist with the Wind Energy Department at Risø National Laboratory in Denmark.Emil Ceanga received a M.Sc. degree in electronics and a Ph.D. degree in automatic control systems, both from Bucharest Polytechnic Institute in Romania, in 1961 and 1969 respectively. Between 1993 and 2004 he has been five times visiting professor at Groupe de Recherche en Automatique et Électrotechnique at Université du Havre in France and one time visiting professor at Université du Québec à Rimouski in Canada. In 2004 he received the distinction "Palmes Académiques" from the French Government. He has advised 15 Ph.D. dissertations and has authored and co-authored 15 books and more than 130 papers at international conferences and in international journals. Between 2001 and 2006 he was Director of the Advanced Control System Research Centre at "Dunarea de Jos University of Galati in Romania. He is presently a professor of electrical engineering at the Department of Electrical Energy Conversion Systems at the same university.

Wind Energy.- Wind Energy Conversion Systems.- WECS Modelling.- Basics of the Wind Turbine Control Systems.- Design Methods for WECS Optimal Control with Energy Efficiency Criterion.- WECS Optimal Control with Mixed Criteria.- Development Systems for Experimental Investigation of WECS Control Structures.- General Conclusion.

Erscheint lt. Verlag 5.2.2008
Reihe/Serie Advances in Industrial Control
Zusatzinfo XXII, 286 p.
Verlagsort London
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Schlagworte climate change • Control • Control Applications • control engineering • Development • energy efficiency • Industrial Pollution Prevention • optimal control • Optimization • Turbine • Wind • Wind Energy • Wind Power • Wind Turbines
ISBN-10 1-84800-080-4 / 1848000804
ISBN-13 978-1-84800-080-3 / 9781848000803
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 6,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich