Cogeneration Fuel Cell-Sorption Air Conditioning Systems -  S.A. Gamboa,  C.A. Isaza,  I. Pilatowsky,  W. Rivera,  Rosenberg J Romero,  P.J. Sebastian

Cogeneration Fuel Cell-Sorption Air Conditioning Systems (eBook)

eBook Download: PDF
2011 | 2011
XIV, 160 Seiten
Springer London (Verlag)
978-1-84996-028-1 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Although conventional cogeneration systems have been used successfully in the last two decades, most of them have been large units using mainly hydrocarbon fuels that are becoming increasingly expensive. New cogeneration systems based on fuel cells and sorption air conditioning systems promise to be an energy-saving alternative for situations when cooling, heating and power are needed at low and medium capacities. Cogeneration Fuel Cell-Sorption Air Conditioning Systems examines the thermodynamic principles of fuel cell performance and sorption air conditioning systems, and gives relevant information about the state of the art of these technologies. It also provides the reader with the theoretical bases and knowledge needed to understand the operation of these new cogeneration systems, as well as discussing the design basis and economical evaluation. Topics covered include: • selected fuel cells for cogeneration CHP processes; • state-of-the-art sorption refrigeration systems; • potential applications in demonstration projects; and • profitability assessment of the cogeneration system. Air conditioning and fuel cell engineers; postgraduates and researchers in energy fields; and designers of cooling, heating and power cogeneration systems will find Cogeneration Fuel Cell-Sorption Air Conditioning Systems a useful and informative reference.

I. Pilatowsky has a PhD in Thermodynamics at High Temperatures from the Université de Perpignan, France. Dr Pilatowsky works for the Centro de Investigación en Energía from the Universidad Nacional Autónoma de México and has 25 years of teaching experience in undergraduate and graduate courses, and 37 years of research in the fields of applied thermodynamic, heat and mass transfer and solar thermal applications at low temperatures, particularly solar refrigeration and air conditioning, solar drying, and solar water heating systems design.

R.J. Romero has a PhD in Engineering from the Universidad Nacional Autónoma de México. He works for the Universidad Autónoma del Estado de Morelos. Dr Romero has 10 years of research experience in applied thermodynamics, in heat pumps, particularly in heat transformers and in the applications field. He has teaching experience in chemical and mechanical engineering in undergraduate and graduate level courses.

C.A. Isaza has a PhD in Engineering in the field of Energy and Thermodynamics from the Universidad Pontificia Bolivariana, Medellín, Colombia. Dr Isaza has 10 years of teaching experience in undergraduate and graduate level courses, and 15 years of research experience in the fields of refrigeration, gas combustion, solar energy, rational and efficient energy use, energy auditing and new energy technologies.

S.A. Gamboa has a PhD in Chemistry from the Universidad Nacional Autónoma de México. He has worked for the Centro de Investigación en Energía from the Universidad Nacional Autónoma de México in projects related to renewable energy resources for more than 15 years. Dr Gamboa has research experience in electric engineering (integrated and hybrid systems), semiconductor devices, Schottky barrier solar cells and synthesis of nanomaterials for electrochemical energy conversion systems, rechargeable batteries, supercapacitors and low temperature fuel cells. He has 10 years of teaching experience in undergraduate and graduate level courses.

P.J. Sebastian has a PhD in Physics (Thin Films) from the Indian Institute of Technology, Madras, India. Dr Sebastian works for the Centro de Investigación en Energía from the Universidad Nacional Autónoma de México. He has 15 years of teaching experience in undergraduate and graduate level courses, and 23 years of research experience in the fields of thin films, semiconductors, solar cells, photovoltaic materials, selective coatings, hydrogen energy, fuel cells, modern batteries, electrochemical systems and material preparation techniques.

W. Rivera has a PhD in Chemical Engineering from the University of Salford, UK. He works for the Centro de Investigación en Energía from Universidad Nacional Atónoma de México. Dr Rivera has 22 years of research experience in the fields of absorption heat pumps, absorption heat transformers and cooling systems. He has 20 years of teaching experience in undergraduate and graduate level courses.


Although conventional cogeneration systems have been used successfully in the last two decades, most of them have been large units using mainly hydrocarbon fuels that are becoming increasingly expensive. New cogeneration systems based on fuel cells and sorption air conditioning systems promise to be an energy-saving alternative for situations when cooling, heating and power are needed at low and medium capacities.Cogeneration Fuel Cell-Sorption Air Conditioning Systems examines the thermodynamic principles of fuel cell performance and sorption air conditioning systems, and gives relevant information about the state of the art of these technologies. It also provides the reader with the theoretical bases and knowledge needed to understand the operation of these new cogeneration systems, as well as discussing the design basis and economical evaluation. Topics covered include: selected fuel cells for cogeneration CHP processes, state-of-the-art sorption refrigeration systems, potential applications in demonstration projects and profitability assessment of the cogeneration system.Air conditioning and fuel cell engineers; postgraduates and researchers in energy fields; and designers of cooling, heating and power cogeneration systems will find Cogeneration Fuel Cell-Sorption Air Conditioning Systems a useful and informative reference.

I. Pilatowsky has a PhD in Thermodynamics at High Temperatures from the Université de Perpignan, France. Dr Pilatowsky works for the Centro de Investigación en Energía from the Universidad Nacional Autónoma de México and has 25 years of teaching experience in undergraduate and graduate courses, and 37 years of research in the fields of applied thermodynamic, heat and mass transfer and solar thermal applications at low temperatures, particularly solar refrigeration and air conditioning, solar drying, and solar water heating systems design. R.J. Romero has a PhD in Engineering from the Universidad Nacional Autónoma de México. He works for the Universidad Autónoma del Estado de Morelos. Dr Romero has 10 years of research experience in applied thermodynamics, in heat pumps, particularly in heat transformers and in the applications field. He has teaching experience in chemical and mechanical engineering in undergraduate and graduate level courses. C.A. Isaza has a PhD in Engineering in the field of Energy and Thermodynamics from the Universidad Pontificia Bolivariana, Medellín, Colombia. Dr Isaza has 10 years of teaching experience in undergraduate and graduate level courses, and 15 years of research experience in the fields of refrigeration, gas combustion, solar energy, rational and efficient energy use, energy auditing and new energy technologies. S.A. Gamboa has a PhD in Chemistry from the Universidad Nacional Autónoma de México. He has worked for the Centro de Investigación en Energía from the Universidad Nacional Autónoma de México in projects related to renewable energy resources for more than 15 years. Dr Gamboa has research experience in electric engineering (integrated and hybrid systems), semiconductor devices, Schottky barrier solar cells and synthesis of nanomaterials for electrochemical energy conversion systems, rechargeable batteries, supercapacitors and low temperature fuel cells. He has 10 years of teaching experience in undergraduate and graduate level courses. P.J. Sebastian has a PhD in Physics (Thin Films) from the Indian Institute of Technology, Madras, India. Dr Sebastian works for the Centro de Investigación en Energía from the Universidad Nacional Autónoma de México. He has 15 years of teaching experience in undergraduate and graduate level courses, and 23 years of research experience in the fields of thin films, semiconductors, solar cells, photovoltaic materials, selective coatings, hydrogen energy, fuel cells, modern batteries, electrochemical systems and material preparation techniques. W. Rivera has a PhD in Chemical Engineering from the University of Salford, UK. He works for the Centro de Investigación en Energía from Universidad Nacional Atónoma de México. Dr Rivera has 22 years of research experience in the fields of absorption heat pumps, absorption heat transformers and cooling systems. He has 20 years of teaching experience in undergraduate and graduate level courses.

Preface 4
Contents 6
Notation 10
1 Energy and Cogeneration 14
1.1 Introduction 14
1.1.1 Energy Concept 14
1.1.2 Energy and Its Impacts 15
1.1.2.1 Energy and Development 15
1.1.2.2 Energy and Economy 16
1.1.2.3 Energy Savings and Efficient Use of Energy 17
1.1.2.4 Energy and the Environment 18
1.1.2.5 Energy Policy 19
1.2 Overview of World Energy 20
1.2.1 World Primary Energy Production and Consumption 20
1.2.1.1 Petroleum 20
1.2.1.2 Natural Gas 21
1.2.1.3 Coal 21
1.2.1.4 Hydroelectric Power 21
1.2.1.5 Nuclear Electric Power 21
1.2.1.6 Geothermal, Solar, Wind, and Wood and Waste Electric Power 22
1.2.2 Energy Consumption by the End-use Sector 22
1.2.2.1 The Residential Sector 22
1.2.2.2 The Commercial Sector 22
1.2.2.3 The Industrial Sector 23
1.2.2.4 The Transportation Sector 23
1.2.3 World Carbon Dioxide Emissions 24
1.2.4 Energy Perspectives 25
1.3 Air Conditioning Needs 26
1.4 Cogeneration Systems 27
1.4.1 Centralized versus Distributed Power Generation 29
1.4.2 Cogeneration Technologies 30
1.4.3 Heat Recovery in Cogeneration Systems 32
1.4.4 Cogeneration System Selections 33
1.5 Cogeneration Fuel Cells – Sorption Air Conditioning Systems 35
1.5.1 Trigeneration 35
1.5.2 Fuel Cells in the Trigeneration Process 36
References 37
2 Thermodynamics of Fuel Cells 38
2.1 Introduction 38
2.2 Thermodynamic and Electrochemical Principles 38
2.2.1 Electrochemical Aspects 38
2.2.2 Thermodynamic Principles 44
2.3 Fuel Cell Efficiency 46
2.4 Fuel Cell Operation 47
References 49
3 Selected Fuel Cells for Cogeneration CHP Processes 50
3.1 Introduction 50
3.2 Fuel Cell Classification 50
3.2.1 The Proton Exchange Membrane Fuel Cell 51
3.2.1.1 Solid Electrolytes in PEMFC 52
3.2.1.2 Electrodes and Assemblies 53
3.2.2 Direct Methanol Fuel Cells 56
3.2.3 Alkaline Electrolyte Fuel Cells 58
3.2.3.1 Common Electrodes Used in Alkaline Fuel Cells 60
3.2.3.2 Technological Challenges for the Development of Alkaline Fuel Cells 61
3.2.4 Phosphoric Acid Fuel Cells 61
3.2.4.1 Electrode Components and the Catalyst 62
3.2.4.2 Characteristics of Phospohric Acid Fuel Cell Operations 63
3.2.4.3 Experimental Phosphoric Acid Fuel Cell Systems 65
References 66
4 State of the Art of Sorption Refrigeration Systems 67
4.1 Introduction 67
4.2 Commercial Systems 68
4.2.1 Absorption Chillers 69
4.2.2 Adsorption Chillers 71
4.2.3 Absorption and Adsorption Small Capacity Systems 72
4.3 Systems under Development 73
4.4 Research Studies 74
4.4.1 Experimental Studies 74
4.4.1.1 Advanced Systems 74
4.4.1.2 Alternative Mixtures 76
4.4.1.3 Components 77
4.4.2 Theoretical Studies 78
4.4.2.1 Advanced Systems 78
4.4.2.2 Alternative Mixtures 80
4.4.2.3 Components 81
References 82
5 Sorption Refrigeration Systems 86
5.1 Introduction 86
5.2 Thermodynamic Principles 86
5.2.1 Heat to Work Energy Conversion 86
5.2.1.1 Carnot’s Di-thermal Cycle, the Thermal Machine 87
5.2.2 Vapor Compression Refrigeration Cycle 91
5.3 Sorption Processes 92
5.3.1 Introduction 92
5.3.2 The Sorption Refrigeration Cycle 93
5.3.3 Sorption Refrigeration Cycle Efficiency 95
5.3.3.1 Theoretical Efficiency 95
5.3.3.2 The Coefficient of Performance 96
5.3.4 Sorption Work Fluids 97
5.3.4.1 Refrigerants 97
5.3.4.2 Sorbents 98
5.3.4.3 Refrigerant-sorbent Systems 98
5.4 Absorption Refrigeration Systems 99
5.4.1 Introduction 99
5.4.2 Working Substances 99
5.4.2.1 The Ammonia–Water System 100
5.4.2.2 Lithium Bromide–Water System 101
5.4.3 Absorption Refrigeration Cycles 101
5.4.3.1 The Intermittent Absorption Cycle 101
5.4.3.2 The Continuous Absorption Cycle 102
5.4.3.3 Modified Continuous Absorption Refrigeration Cycle 103
5.4.3.4 Absorption Refrigeration Cycle for Air Conditioning 105
5.5 Advanced Cycles 106
5.5.1 Multieffect Absorption Refrigeration Cycles 106
5.5.2 Absorption Refrigeration Cycles with a Generator/Absorber/Heat Exchanger 108
5.5.3 Absorption Refrigeration Cycle with Absorber-heat-recovery 109
5.6 Adsorption Refrigeration System 110
5.6.1 Adsorbent/Adsorbate Working Pair 111
References 111
6 Cogeneration Fuel Cells – Air Conditioning Systems 114
6.1 Introduction 114
6.2 Considerations for Cogeneration Systems Based on Fuel Cells and Sorption Air Conditioning 114
6.2.1 Coupling of Technologies 116
6.2.2 Concepts of Efficiency 117
6.3 Modeling of Cogeneration Systems Using Fuel Cells. Promising Applications 118
6.3.1 Operation Conditions 119
6.3.2 Modeling of a Cogeneration System Using an Absorption Air Conditioning System with Water–Lithium Bromide as Working Fluid 120
6.3.3 Modeling of a Cogeneration System Using an Absorption Air Conditioning System with a Water–Carrol™ as Working Fluid 122
6.3.4 Modeling of a Cogeneration System Using an Absorption Air Conditioning System with Monomethylamine–Water as Working Fluid 125
6.4 Modeling of Trigeneration Systems 127
6.5 Conclusion 130
References 130
7 Potential Applications in Demonstration Projects 132
7.1 Introduction 132
7.2 A New Era in Energy Revolution: Applications of Fuel Cells 133
7.2.1 Stationary Applications 134
7.2.2 Mobile and Transportation Applications 136
7.2.3 Portable Applications 137
7.2.4 Military Applications 138
7.2.5 Combined Heat and Power 138
7.3 Examples of Combined Heat and Electricity Use from Fuel Cells in Demonstration Projects 139
7.3.1 Stationary PAFC Cogeneration Systems 139
7.3.2 PEMFC in Mobile Systems 139
7.3.3 CHP Systems with Fuel Cells 140
7.3.3.1 Hospital and Autonomous Applications 141
References 142
8 Profitability Assessment of the Cogeneration System 143
8.1 Introduction 143
8.2 Elements of Profitability Assessment 144
8.2.1 Time Value of Money 144
8.2.1.1 Future Worth 144
8.2.1.2 Present Worth 145
8.2.1.3 Future Worth of an Annuity 145
8.2.1.4 Annuity of Future Worth 146
8.2.1.5 Present Worth of an Annuity 146
8.2.1.6 Annuity of Present Worth 146
8.2.2 Annual Costs and Cash Flows 147
8.2.3 Capital Costs 147
8.2.4 Methods for Estimating Profitability 148
8.2.4.1 Payback Period 148
8.2.4.2 Net Present Value and Net Present Cost 149
8.2.4.3 Internal Rate of Return 150
8.2.4.4 Equivalent Uniform Annual Cost 151
8.3 Profitability Assessment of the Systems 151
8.3.1 Profitability Assessment of a PEM Fuel Cell 151
8.3.2 Profitability Assessment of a Compression Air Conditioning System 153
8.3.3 Profitability Assessment of an Absorption Air Conditioning System 155
8.3.4 Profitability Assessment for the PEMFC-CACS 158
8.3.5 Profitability Assessment for the PEMFC-AACS 159
8.3.6 Comparison of the Profitability Assessment of the PEMFC-AACS and the PEMFC-CACS 161
8.4 Conclusions 163
References 163
Index 165

Erscheint lt. Verlag 28.1.2011
Reihe/Serie Green Energy and Technology
Zusatzinfo XIV, 160 p.
Verlagsort London
Sprache englisch
Themenwelt Technik Elektrotechnik / Energietechnik
Schlagworte Air Conditioning • Cogeneration • CP6917 • Fuel cells • Sorption Systems
ISBN-10 1-84996-028-3 / 1849960283
ISBN-13 978-1-84996-028-1 / 9781849960281
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 3,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Lehrbuch zu Grundlagen, Technologie und Praxis

von Konrad Mertens

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
34,99
Ressourcen und Bereitstellung

von Martin Kaltschmitt; Karl Stampfer

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
66,99
200 Aufgaben zum sicheren Umgang mit Quellen ionisierender Strahlung

von Jan-Willem Vahlbruch; Hans-Gerrit Vogt

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
34,99