Ground Vibration Engineering -  Milutin Srbulov

Ground Vibration Engineering (eBook)

Simplified Analyses with Case Studies and Examples
eBook Download: PDF
2010 | 2010
XVIII, 233 Seiten
Springer Netherlands (Verlag)
978-90-481-9082-9 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Ground vibration consideration is gaining significance with people's decreasing tolerance of vibration, introduction of new environmental legislations, increasing use of equipment sensitive to vibration, ageing of existing buildings and expanding construction sites to/near collapsible/liquefiable/thixotropic soil.
This volume bridges the gap that exists between rather limited provisions of engineering codes/standards and complex numerical analyses/small-scale tests.
The book contains descriptions of ground vibration measurements, predictions and control for engineers. Effects of most frequent sources of ground vibration arising from construction/demolition, traffic and machinery, ground wave amplification and attenuation as well as foundation kinematic and inertial interaction have been considered by simplified analyses aimed at ease and speed of use for major problems in ground vibration engineering. Comments on assumptions, limitations, and factors affecting the results are given. Case studies and examples worldwide are included to illustrate the accuracy and usefulness of simplified methods. A list of references is provided for further consideration, if desired.

Audience: This work is of interest to geotechnical engineers, engineering geologists, earthquake engineers and students.

Extra material: Microsoft Excel spreadsheets with the input data and results for the case studies and examples considered in this book are available at http://extras.springer.com


Ground vibration consideration is gaining significance with people's decreasing tolerance of vibration, introduction of new environmental legislations, increasing use of equipment sensitive to vibration, ageing of existing buildings and expanding construction sites to/near collapsible/liquefiable/thixotropic soil.This volume bridges the gap that exists between rather limited provisions of engineering codes/standards and complex numerical analyses/small-scale tests.The book contains descriptions of ground vibration measurements, predictions and control for engineers. Effects of most frequent sources of ground vibration arising from construction/demolition, traffic and machinery, ground wave amplification and attenuation as well as foundation kinematic and inertial interaction have been considered by simplified analyses aimed at ease and speed of use for major problems in ground vibration engineering. Comments on assumptions, limitations, and factors affecting the results are given. Case studies and examples worldwide are included to illustrate the accuracy and usefulness of simplified methods. A list of references is provided for further consideration, if desired.Audience: This work is of interest to geotechnical engineers, engineering geologists, earthquake engineers and students. Extra material: Microsoft Excel spreadsheets with the input data and results for the case studies and examples considered in this book are available at http://extras.springer.com

Foreword 6
Preface 8
Acknowledgments 9
Contents 10
List of Symbols 14
1 Problem Description 18
1.1 Introduction 18
1.2 Sensitivities of Recipients and Legislation Requirements 18
1.2.1 Humans 18
1.2.1.1 Example of Guidelines in Codes for Vibration Limits Acceptable to Humans in Buildings 19
1.2.2 Equipment 20
1.2.3 Structures 21
1.2.3.1 Examples of Guidelines in Standards Used Internationally 21
1.2.4 Collapsible/Liquefiable/Thixotropic Soil 22
1.2.4.1 Example of Failure of an Embankment in Sweden 24
1.2.4.2 Example of Failure of an Embankment in Michigan, USA 24
1.3 Frequent Sources of Ground Vibration 24
1.3.1 Construction/Demolition Activities 24
1.3.1.1 Pile Driving 25
1.3.1.2 Soil Shallow Compaction 26
1.3.1.3 Demolition of Structures 27
1.3.1.4 Blasting in Construction and Mining Industries 28
1.3.1.5 Soil Deep Compaction by Explosives 29
1.3.2 Traffic 29
1.3.2.1 Train Induced Vibrations 29
1.3.2.2 Vehicle Induced Vibrations 31
1.3.3 Machinery 31
1.3.3.1 Examples of Dynamic Loads From Machinery 32
1.4 Vibration Propagation Media Effects 32
1.4.1 Ground Amplification and Attenuation of Wave Amplitudes 33
1.4.1.1 Wave Amplitudes Amplification 33
1.4.1.2 Wave Amplitude Attenuation 34
1.4.2 Foundation Kinematic and Inertia Interactions 35
1.4.2.1 Kinematic Interaction 35
1.4.2.2 Inertial Interaction 37
1.5 Summary 37
2 Ground Waves Propagation 39
2.1 Introduction 39
2.2 Main Wave Parameters 40
2.3 Types and Amplitudes of Ground Waves 41
2.3.1 Body Waves 41
2.3.2 Surface Waves 44
2.4 Ground Wave Path Effects and Other Influential Factors 46
2.4.1 Impedance 46
2.4.2 Refraction 47
2.4.3 Reflection 48
2.4.4 Superposition and Focusing 50
2.4.5 Ground Stiffness and Its Anisotropy 50
2.4.6 Geometric (Radiation) Damping 51
2.4.7 Material Damping 52
2.4.7.1 Example of the Effect of Material Damping on Peak Particle Velocities 55
2.4.8 Soil Layering and Topography 56
2.4.8.1 Example of the Ratio Between Foundation and Ground Amplitudes for a Layered and an Equivalent Homogeneous Soil 56
2.5 Summary 58
3 Ground Vibration Measurement 59
3.1 Introduction 59
3.2 Geophones 61
3.2.1 Short Period Sensors 63
3.2.1.1 Case Study of Micro-tremor Field Investigation into Site Effects in Duzce -- Turkey by Tromans (2004) 63
3.2.2 Long Period Sensors 68
3.3 Accelerometers 69
3.3.1 Analogue System 72
3.3.2 Mixed Systems 72
3.3.3 Digital Systems 73
3.3.3.1 Case Study of Assessed Vibration Susceptibility over Shallow and Deep Bedrock Using Accelerometers and Weight Drops 74
3.4 Summary 76
4 Processing of Vibration Records 78
4.1 Introduction 78
4.2 Filtering of High Frequencies 78
4.2.1 Fourier Analysis and Fast Fourier Transform 81
4.2.1.1 Example of Fast Fourier Transform and Filtering in Frequency Domain 84
4.3 Baseline Correction 86
4.3.1 Example of Baseline Correction for the Record Shown in Fig. 4.3 87
4.4 Spectral Analyses 90
4.4.1 Fourier Spectra 91
4.4.1.1 Example Shapes of FAS 91
4.4.2 Power Spectra 92
4.4.3 Response Spectra 93
4.4.3.1 Example of an Elastic Acceleration Response Spectra 96
4.5 Summary 96
5 Foundation and Structure Effects 99
5.1 Introduction 99
5.2 A Simplified Model of Kinematic Soil-Foundation Interaction 99
5.2.1 Example of the Kinematic Soil-Foundation Interaction Effect 100
5.3 Fundamental Period of Vibration of a Simplified Soil-Foundation Interaction Model 102
5.3.1 Generalized Single Degree of Freedom Oscillator 105
5.3.2 Case Study of Determination of the Fundamental Frequency of Vibration of a Caisson 106
5.3.3 Case Study of Determination of the Fundamental Frequency of Vibration of Foundation of a Large Scale Shaking Table 107
5.3.4 Case Study of Determination of the Fundamental Frequency of Vibration of a Seven-Story Reinforced Concrete Building in Van Nuys--California 109
5.4 Summary 115
6 Ground Investigation for Vibration Prediction 117
6.1 Introduction 117
6.2 Field Non-intrusive Methods 118
6.2.1 Seismic Refraction 119
6.2.2 Seismic Reflection 121
6.2.3 Spectral Analysis of Surface Waves 122
6.2.4 Seismic Tomography 123
6.2.5 Ground Penetrating Radar 123
6.2.6 Field Compaction 124
6.3 Field Intrusive Methods 124
6.3.1 Seismic Down-Hole 124
6.3.2 Seismic Cross-Hole 125
6.3.3 Seismic Cone 126
6.4 Laboratory Testing 127
6.4.1 Bender Elements 128
6.4.2 Cyclic Simple Shear 129
6.4.3 Cyclic Triaxial Test 131
6.4.4 Resonant Column 134
6.5 Summary 135
7 Prediction of Vibration Amplitudes 136
7.1 Introduction 136
7.2 Construction and Demolition Caused Vibration 137
7.2.1 Pile Driving 137
7.2.1.1 Calculation of Source Energy Eo Due to Pile Driving in the Simple Analyses 139
7.2.1.2 Case Study of Determination of the Peak Particle Velocities During Driving of a Steel H Section Pile by an Impact Hammer 146
7.2.1.3 Case Study of Determination of the Peak Particle Velocities During Driving of Tubular Steel Piles by Vibratory and Impact Hammer 148
7.2.1.4 Case Study of Determination of the Peak Particle Velocities During Driving of Tubular and Sheet Piles by Vibratory Hammers 152
7.2.2 Soil Shallow Compaction 153
7.2.2.1 Case Study of Determination of the Peak Particle Velocities During Installation of Stone Columns by a Vibratory Probe 155
7.2.2.2 Case Study of Determination of the Peak Particle Velocities During Fill Compaction by Vibratory Rollers 157
7.2.3 Demolition of Structures 160
7.2.3.1 Case Study of Determination of the Peak Particle Velocities During Demolition of a Cooling Tower at Thornhill in 1971 161
7.2.4 Blasting in Construction and Mining Industries 163
7.2.4.1 Case Study of Determination of Peak Particle Velocities Caused by Bench Blasting at a Limestone Quarry 164
7.2.4.2 Case Study of Determination of Peak Particle Velocities Caused by Blasting for a Pipeline Installation 166
7.2.5 Soil Deep Compaction by Explosives 169
7.2.5.1 Case Study of Determination of Peak Particle Velocities Caused by Densification of Pond Ash by Blasting 169
7.3 Vibration Caused by Trains and Road Vehicles 171
7.3.1 Train Caused Vibration 171
7.3.1.1 Case Study of Determination of Peak Particle Velocities Caused by High Speed Thalys Train 173
7.3.1.2 Case Study of Determination of Peak Particle Velocities Caused by High Speed Train at Kahog in Sweden 174
7.3.2 Vehicle Caused Vibration 175
7.3.2.1 An Example of Calculation of Peak Particle Velocity Caused by a Wheel Drop into a Road Hole 175
7.4 Machinery Caused Vibration 176
7.4.1 Industrial Hammers Caused Vibration 176
7.4.1.1 Case Study of Determination of Peak Particle Velocities Caused by Weight Drops 177
7.4.2 Case Study of Determination of Ground Vibration Caused by a Compressor 178
7.4.3 Case Study of Determination of Ground VibrationCaused by a Gas Turbine 183
7.4.4 Tunnel Boring Machines Caused Vibration 186
7.5 Summary 187
8 Control of Ground and Foundation Vibration 188
8.1 Introduction 188
8.2 Minimization at Source 188
8.2.1 Base Isolation 188
8.2.1.1 Cases Study of Base Isolation by Rubber Bearings of the Foundation Block of a Compressor 189
8.2.2 Energy Dissipation by Dampers 193
8.2.2.1 Example of Viscoelastic Dampers Effect on the Motion of a Foundation 194
8.3 Ground Wave Propagation Barriers 196
8.3.1 Stiff Barriers 197
8.3.1.1 Case Study on the Use of a Simplified Approach for Checking of the Effectiveness of a Pre-cast Concrete Wall Barrier 197
8.3.2 Soft Barriers 198
8.3.2.1 Case Study on the Use of a Simplified Approach for Checking of the Effectiveness of a Cut-Off Trench 198
8.4 Recipient Isolators and Energy Dampers 199
8.4.1 Passive Systems 199
8.4.1.1 Case Study of Isolation of a Building in Japan by Rubber Bearings 199
8.4.2 Active Systems 203
8.5 Summary 204
9 Effects on Soil Slopes and Shallow Foundations 205
9.1 Introduction 205
9.2 Slope Instability Caused by Vehicle Induced Ground Vibration 205
9.2.1 Case Study of the Instability of Asele Road Embankment in Sweden 207
9.3 Shallow Foundation Settlement Caused by Ground Vibration 208
9.3.1 Case Study of Foley Square Building Settlement Caused by Pile Driving in Its Vicinity 211
9.4 Bearing Capacity of Shallow Foundation over Liquefied Soil Layer 212
9.5 Summary 214
Appendices -- Microsoft Excel Workbooks on http://extras.springer.com 215
1 Fast Fourier Transform, Filtering and Inverse Fast Fourier Transform 215
2 Polynomial Base Line Correction 215
3 Elastic Response Spectra of a Single Degree of Freedom Oscillator 215
4 Peak Particle Velocities from Piles Driving 215
5 Peak Particle Velocities from Vibratory Rollers 220
6 Vibration Properties of a Shallow Foundation for Compressor 220
7 Vibration Properties of a Shallow Foundation for Gas Turbine 225
8 Vibration Properties of a Rubber Bearings Isolated Foundation 225
9 Vibration Properties of a Viscoelastically Damped Foundation 225
10 Vibration Properties of a Passively Isolated Building in Japan Upper Bound Horizontal Stiffness and Damping Ratio 225
11 Vibration Properties of a Passively Isolated Building in Japan Lower Bound Horizontal Stiffness and Damping Ratio 232
12 Fast Movement on Failure of the Asele Road Embankment in Sweden 232
References 233
Index 243

Erscheint lt. Verlag 5.7.2010
Reihe/Serie Geotechnical, Geological and Earthquake Engineering
Zusatzinfo XVIII, 233 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Meteorologie / Klimatologie
Technik Bauwesen
Schlagworte Earthquake • Engineering • Ground • spreadsheet • Structure • Vibration
ISBN-10 90-481-9082-7 / 9048190827
ISBN-13 978-90-481-9082-9 / 9789048190829
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 11,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich