Environmental Biotechnology (eBook)

eBook Download: PDF
2010 | 1. Auflage
XXIV, 975 Seiten
Humana Press (Verlag)
978-1-60327-140-0 (ISBN)

Lese- und Medienproben

Environmental Biotechnology -
Systemvoraussetzungen
309,23 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The past 30 years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution - air, water, soil, and noise. Since pollution is a direct or indirect consequence of waste production, the seemingly idealistic demand for 'zero discharge' can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identi ed: (1) How serious is the pollution? (2) Is the technology to abate it available? and (3) Do the costs of abatement justify the degree of abatement achieved? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers formulate answers to the last two questions above. The traditional approach of applying tried-and-true solutions to speci c pollution problems has been a major contributing factor to the success of environmental engineering, and has accounted in large measure for the establishment of a 'methodology of pollution control. ' However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders it imperative that intelligent planning of pollution abatement systems be undertaken.
The past 30 years have seen the emergence of a growing desire worldwide that positive actions be taken to restore and protect the environment from the degrading effects of all forms of pollution - air, water, soil, and noise. Since pollution is a direct or indirect consequence of waste production, the seemingly idealistic demand for "e;zero discharge"e; can be construed as an unrealistic demand for zero waste. However, as long as waste continues to exist, we can only attempt to abate the subsequent pollution by converting it to a less noxious form. Three major questions usually arise when a particular type of pollution has been identi ed: (1) How serious is the pollution? (2) Is the technology to abate it available? and (3) Do the costs of abatement justify the degree of abatement achieved? This book is one of the volumes of the Handbook of Environmental Engineering series. The principal intention of this series is to help readers formulate answers to the last two questions above. The traditional approach of applying tried-and-true solutions to speci c pollution problems has been a major contributing factor to the success of environmental engineering, and has accounted in large measure for the establishment of a "e;methodology of pollution control. "e; However, the realization of the ever-increasing complexity and interrelated nature of current environmental problems renders it imperative that intelligent planning of pollution abatement systems be undertaken.

Dedications 5
Preface 6
Contents 9
Contributors 21
1 Applications of Environmental Biotechnology 23
1 Introduction 24
2 Comparison of Biotechnological Treatment and Other Methods 25
3 Aerobic Treatment of Wastes 26
3.1 Aerobic Treatment of Solid Wastes 26
3.2 Aerobic Treatment of Liquid Wastes 28
3.3 Aerobic Treatment of Gaseous Wastes 28
4 Anaerobic Treatment of Wastes 29
5 Treatment of Heavy Metals-Containing Wastes 31
6 Enhancement of Biotechnological Treatment of Wastes 32
7 Biosensors 36
References 38
2 Microbiology of Environmental Engineering Systems 40
1 Microbial Groups and Their Quantification 41
1.1 Groups of Microorganisms 42
1.2 Microbiological Methods Used in Environmental Engineering 45
1.3 Comparison of Physical, Chemical, Physico-chemical and Microbiological Processes 49
2 Microbial Ecosystems 50
2.1 Structure of Ecosystems 50
2.2 Interactions in Microbial Ecosystems 53
3 Microbial Growth and Death 59
3.1 Nutrients and Media 59
3.2 Growth of Individual Cells 61
3.3 Growth of Population 63
3.4 Effect of Environment on Growth and Microbial Activities 64
3.5 Death of Microorganisms 66
4 Diversity Of Microorganisms 70
4.1 Physiological Groups of Microorganisms 70
4.2 Phylogenetic Groups of Prokaryotes 71
4.3 Connection Between Phylogenetic Grouping and G + C Contentof Chromosomal DNA 74
4.4 Comparison of rRNA-Based Phylogenetic Classificationand Conventional Phenotypic Taxonomy 75
4.5 Periodic Table of Prokaryotes 81
5 Functions of Microbial Groups in Environmental Engineering Systems 84
5.1 Functions of Anaerobic Prokaryotes 84
5.2 Functions of Anaerobic Respiring Prokaryotes 86
5.3 Functions of Facultative Anaerobic and Microaerophilic Prokaryotes 89
5.4 Functions of Aerobic Prokaryotes 92
5.5 Functions of Eukaryotic Microorganisms 98
References 99
3 Microbial Systematics 101
1 Introduction 102
2 Systematics, Taxonomy, and Nomenclature of Prokaryotes 103
2.1 General Definitions 103
2.2 The Definition of the Prokaryote Species 104
2.3 The Number of Prokaryotes that Have Been Described 107
3 Classification of Prokaryotes 108
3.1 Genotypic Properties Used in Prokaryote Classification 110
3.2 Phenotypic Properties Used in Prokaryote Classification 112
3.3 The Polyphasic Approach Toward Prokaryote Classification 114
4 Naming of Prokaryotes 115
4.1 The Binomial System of Naming Prokaryotes 115
4.2 The Bacteriological Code 116
4.3 The International Committee on Systematics of Prokaryotes 116
4.4 The International Journal of Systematic and Evolutionary Microbiology 117
4.5 Information on Nomenclature of Prokaryotes on the Internet 117
5 Culture Collections of Prokaryotes and Their Importance in Taxonomy and Identification 118
6 Small-Subunit rRNA-Based Classification of Prokaryotes 118
6.1 16S rRNA as a Phylogenetic Marker 119
6.2 The Differences Between Bacteria and Archaea 126
6.3 An Overview of the Bacteria 129
6.4 An Overview of the Archaea 130
7 Sources of Information on Prokaryote Systematics 131
7.1 Bergey's Manual of Systematic Bacteriology 131
7.2 The Prokaryotes 131
8 Identification of Prokaryote Isolates 132
9 The Number of Different Species of Prokaryotes in Nature 134
10 Conclusions 136
Nomenclature 137
References 137
4 Microbial Ecology 141
1 Introduction 141
2 The Major Terms, Principles, and Concepts of General and Microbial Ecology 143
2.1 From Molecule to Biosphere: The Hierarchy of Organizational Levels in Biology 143
2.2 The Ecosystem Concept 145
2.2.1 Food Chain and Metabolic Network 147
2.2.2 The Basics of Microbial Stoichiometry 148
2.2.3 Microbial Loop 150
2.2.4 Homeostasis 150
2.2.5 Ecosystem Productivity 151
2.3 Environmental Factors 152
2.3.1 Liebig's ``Law of Minimum'' 152
2.3.2 Shelford's Tolerance ``Law'' 153
2.4 Population Dynamics, Succession and Life Strategy Concept 154
2.4.1 Population Dynamics and Fluctuations 154
2.4.2 Development and Evolution of Ecosystems 158
2.4.3 The Concept of Life Strategy 159
2.4.4 Growth Kinetics of Microorganisms with Different Life Strategy 163
3 Methods of Microbial Ecology 167
3.1 Natural Microbial Populations and ``Laboratory Artifacts'' 168
3.2 ``Great Plate Count Anomaly'' 169
3.3 Estimation of the Microbial Numbers and Biomass in Soils and Water 171
3.4 Estimating Microbial Growth Rates In Situ 173
3.4.1 Microscopy In Situ 173
3.4.2 Methods Based on the Analysis of the Cell-Division Cycle 174
3.4.3 Genetic Methods 174
3.4.4 Techniques Stemming from Chemostat Theory 174
3.4.5 Isotope Techniques 175
3.4.6 Assessment of Productivity from Fluctuation Frequency of Microbial Biomass 176
3.4.7 Estimation of Productivity from C-Balance 176
4 Diversity of Microbial Habitats in Nature 178
4.1 Terms and General Principles (How to Classify Habitats) 178
4.2 Atmosphere 180
4.2.1 Atmosphere as Extreme Habitat 180
4.2.2 Organisms 182
4.2.3 Significance for Environmental Engineering 182
4.3 Aquatic Ecosystems 182
4.3.1 Lakes 183
4.3.2 Rivers 187
4.3.3 Marine Ecosystems 188
4.3.4 Significance for Environmental Engineering 190
4.4 Terrestrial Ecosystems 190
4.4.1 Soil 190
4.4.2 Deep Subsurface 193
4.4.3 Wetlands 194
4.4.4 Significance for Environmental Engineering 195
Nomenclature 197
Glossary 198
References 208
5 Microbial Metabolism: Importance for Environmental Biotechnology 212
1 Introduction: the Metabolic Diversity of Prokaryotic and Eukaryotic Microorganisms 213
2 Dissimilatory Metabolism of Microorganisms: Thermodynamic and Mechanistic Principles 214
2.1 General Overview of the Metabolic Properties of Microorganisms: A Thermodynamic Approach 214
2.2 Modes of Energy Generation of Prokaryotic and Eukaryotic Microorganisms 221
3 Assimilatory Metabolism of Microorganisms 230
3.1 Carbon Assimilation 230
3.2 Nitrogen Assimilation 232
3.3 Phosphorus Assimilation 234
3.4 Sulfur Assimilation 234
3.5 Iron Assimilation 235
4 The Phototrophic Way of Life 235
4.1 Oxygenic Photosynthesis 236
4.2 Anoxygenic Photosynthesis 236
4.3 Retinal-Based Phototrophic Life 238
5 Chemoheterotrophic Life: Degradation of Organic Compounds In Aerobic and Anaerobic Environments 239
5.1 Aerobic Degradation 240
5.2 Anaerobic Respiration: Denitrification 241
5.3 Fermentation 242
5.4 Anaerobic Respiration: Dissimilatory Iron and Manganese Reduction 246
5.5 Anaerobic Respiration: Dissimilatory Sulfate Reduction 247
5.6 Methanogenesis 248
5.7 Proton-Reducing Acetogens and Interspecies Hydrogen Transfer 250
6 The Chemoautotrophic Way of Life 253
6.1 Reduced Nitrogen Compounds as Energy Source 253
6.2 Reduced Sulfur Compounds as Energy Source 255
6.3 Reduced Iron and Manganese as Energy Source 257
6.4 Hydrogen as Energy Source 257
6.5 Other Substrates as Energy Sources for Chemoautotrophic Growth 258
7 The Biogeochemical Cycles of the Major Elements 259
7.1 The Carbon Cycle 259
7.2 The Nitrogen Cycle 261
7.3 The Sulfur Cycle 261
7.4 Biogeochemical Cycles of Other Elements 261
8 Epilogue 264
Nomenclature 264
References 264
Appendix: Compounds of Environmental Significance and the Microbial Processes Responsible for Their Formation and Degradation 267
Appendix: Compounds of Environmental Significance and the Microbial Processes Responsible for Their Formation and Degradation 264
6 Microbial Ecology of Isolated Life Support Systems 275
1 Introduction 276
2 Functional and Regulator Role of Microbial Populations 277
2.1 Microalgae and Bacteria Communities as Bioregenerators in Life Support Systems 277
2.1.1 Special Waste Treatment Systems for LSS 281
3 Microecological Risks for Human Life Support Systems 284
3.1 Man and His Microflora as a Single Ecosystem 284
3.2 Environmental Microflora in Different Types of LSS 289
3.3 Unsolved Problems and Prospects 294
3.3.1 Use of the Organism's Protective Microorganisms to Defend Against Pathogens 295
4 The Indicator Role and Monitoring of Microorganismsin LSS 296
4.1 Microbial Diagnostics Method 297
4.2 The Use of Skin Bacteria and Bactericidal Activity to Estimate Immune Responsiveness 297
4.3 The Use of Microecosystem Response to Indicate Human Health 298
4.4 The Estimation of the ``Health'' and Normal Functioningof LSS and Its Links 299
5 Conclusion 300
References 301
7 Environmental Solid-State Cultivation Processes and Bioreactors 305
1 Definition of Solid-State Cultivation Processes 306
2 Classification of Environmental Applications of Solid-State Cultivation Processes 308
2.1 General Scheme for Classifying Solid-State Processes Used in Environmental Biotechnology 308
2.2 Examples of Environmentally-Related Processes that Use Solid Residues 309
2.2.1 Two Examples of Class 1 Processes 309
2.2.2 An Example of a Class 2 Process 309
2.2.3 Two Examples of Class 3 Processes 312
2.2.4 An Example of a Class 4 Process 315
2.2.5 Two Examples of Class 5 Processes 316
3 Classification of Process Types 317
4 The Functions that the Solid-State Cultivation Bioreactor Must Fulfill 319
5 Classification of Bioreactors Used in Environmentally-Related Solid-State Cultivation Processes 322
5.1 Group I Bioreactors: Not Aerated Forcefully and Not-Mixed 322
5.2 Group II Bioreactors: Aerated Forcefully but Not-Mixed 323
5.3 Group III Bioreactors: Not Aerated Forcefully but Mixed 325
5.4 Group IV Bioreactors: Aerated Forcefully and Mixed 325
6 Design of Bioreactors for Environmentally-Related Solid-State Cultivation Processes 328
6.1 General Considerations for the Selection and Design of Bioreactors 328
6.2 The Importance of Characterizing the Growth Kinetics of the Microorganism 333
6.3 Design of Group I Bioreactors 334
6.3.1 Simple Approaches to Making Design Decisions About Group I Bioreactors 336
6.3.2 Model-Based Approaches to Making Design Decisions About Group I Bioreactors 337
6.3.3 Synthesis of Our Knowledge About How Best to Operateand Design Group I Bioreactors 337
6.4 Design of Group II Bioreactors 337
6.4.1 Simple Approaches to Making Design Decisions About Group II Bioreactors 338
6.4.2 Model-Based Approaches to Making Design Decisions About Group II Bioreactors 340
6.4.3 Synthesis of Our Knowledge About How Best to Operate and Design Group II Bioreactors 342
6.5 Design of Group III Bioreactors 344
6.5.1 Simple Approaches to Making Design Decisions About Group III Bioreactors 344
6.5.2 Model-based Approaches to Making Design Decisions about Group III Bioreactors 346
6.5.3 Recent Directions in Characterizing the Phenomena in Group III Bioreactors 347
6.5.4 Synthesis of Our Knowledge about How Best to Operate and Design Group III Bioreactors 349
6.6 Design of Group IV Bioreactors 349
6.6.1 Simple Approaches to Making Design Decisions about Group IV Bioreactors 350
6.6.2 Model-Based Approaches to Making Design Decisions about Group IV Bioreactors 350
7 Associated Issues That Must Be Considered in Bioreactor Design 351
7.1 A Challenge in all Bioreactor Types: Design of the Air Preparation System 351
7.2 Monitoring and Control Systems for Bioreactors 352
7.2.1 Equipment for On-Line Monitoring 352
7.2.2 Control Strategies for Solid-State Cultivation Bioreactors 355
8 Future Perspectives 355
Acknowledgments 356
Nomenclature 356
References 357
8 Value-Added Biotechnological Products from Organic Wastes 361
1 Organic Wastes as a Raw Material for Biotechnological Transformation 362
2 Biotechnological Products of Organic Waste Transformation 362
2.1 Solid-State Fermentation for Bioconversion of Agricultural and Food Processing Waste into Value-Added Products 363
2.2 Production of Enzymes 368
2.3 Production of Organic Acids 371
2.4 Production of Flavors 376
2.5 Production of Polysaccharides 379
2.6 Mushroom Production 380
2.7 Production of Biodegradable Plastics 382
2.8 Production of Animal Feed 384
2.8.1 Enrichment of Lignocellulosic Material by Single Cell Protein 384
2.8.2 Use of Organic Waste as Substance for Microbial Cells Production 385
2.9 Use of Organic Waste for Production of Fungi Biomass for Bioremediation 386
2.10 Dietary Fiber Production from Organic Waste 386
2.11 Production of Pharmaceuticals from Organic Waste 387
2.12 Production of Gibberellic Acid 389
2.13 Production of Chemicals 389
2.13.1 Production of Acetone and Butanol 390
2.13.2 Production of Glycerol 390
2.14 Production of Fuel 392
2.14.1 Production of Ethanol 392
2.14.2 Production of Hydrogen 396
3 Value-Added by-Products of Environmental Biotechnology 398
3.1 Composting 398
3.2 Aerobic Intensive Bioconversion of Organic Wastes into Fertilizer 401
3.3 Recovery of Metals from Mining and Industrial Wastes 401
3.4 Recovery of Metals from Waste Streams by Sulfate-Reducing Bacteria 402
3.5 Recovery of Phosphate and Ammonia by Iron-Reducing and Iron-Oxidizing Bacteria 404
References 406
9 Anaerobic Digestion in Suspended Growth Bioreactors 413
1 Introduction 414
2 Fundamentals of Anaerobic Bioprocesses 415
2.1 Microbiology and Anaerobic Metabolism of Organic Matter 416
2.1.1 Hydrolysis 417
2.1.2 Acidification 418
2.1.3 Acetogenesis 418
2.1.4 Methanogenesis 418
2.2 Stoichiometry and Energetics 419
2.3 Kinetics 421
3 Effect of Feed Characteristics on Anaerobic Digestion 426
3.1 Anaerobic Biodegradability 427
3.2 Inhibition and Toxicity 427
3.3 Availability of Nutrients 428
3.4 Flow-Rate Variations 428
4 Reactor Configurations 429
4.1 Conventional Systems 429
4.2 High-Rate Systems 430
4.3 Two-Stage Systems 433
4.4 Natural Systems 433
5 Suspended Growth Anaerobic Bioreactor Design 434
5.1 Operating Parameters 434
5.1.1 pH and Alkalinity 434
5.1.2 Temperature 435
5.1.3 HRT 435
5.1.4 Mixing 435
5.1.5 Toxicity Prevention and Removal 436
5.2 Sizing Bioreactors 437
5.2.1 Conventional Systems 437
5.2.2 Upflow Anaerobic Sludge Blanket Reactors 439
5.3 Biogas Collection and Exploitation 440
5.4 StartUp and Acclimation 440
6 Control and Optimization of Anaerobic Digesters 441
6.1 Monitoring 441
6.2 Process Control 442
6.3 Optimization 442
6.3.1 Stability 442
6.3.2 Operating Costs 443
6.3.3 Discharge Costs 443
7 Applications 444
7.1 Anaerobic Sludge Digestion 444
7.2 Comparison Between UASB and CSTR for Anaerobic Digestion of Dairy Wastewaters 445
7.2.1 UASB Experiment with Dairy Wastewater 445
7.2.2 Conventional Digester Experiment 447
7.2.3 Conclusion 447
7.3 Biogas Production from Sweet Sorghum 448
7.4 Anaerobic Digestion of Solid Wastes 449
Nomenclature 450
References 452
10 Selection and Design of Membrane Bioreactors in Environmental Bioengineering 457
1 Introduction 458
2 Theoretical Aspects of Membrane Filtration 461
2.1 Membrane Classification 463
2.2 Types of Packaging of Membranes 465
2.3 Membrane Technologies 467
2.4 Factors Affecting Membrane Processes 470
2.4.1 Membrane Properties 472
2.4.2 Feed Composition 474
2.4.3 Operational Parameters 474
2.5 Mathematical Models for Flux Prediction 474
3 Membrane Biological Reactors for Solid/Liquid Separation 476
3.1 Process Configurations 476
3.2 Fouling in MBRs 478
3.2.1 Impact Factors 478
3.2.2 Mechanisms 482
3.2.3 Control Strategies 483
3.2.4 Critical Flux Concept 485
3.3 Commercial Membrane 488
3.3.1 Kubota 488
3.3.2 General Electric Zenon 490
3.3.3 Siemens Water Technologies - Memcor 491
3.3.4 X-Flow 492
3.3.5 Mitsubishi 493
3.3.6 Huber 494
4 Design of the Biological Tank for COD and Nitrogen Removal 495
4.1 Introduction 495
4.2 Influent COD and TKN Fractioning 498
4.3 Impact of Environmental Conditions on the Bacterial Growthand the Substrate Removal 500
4.3.1 Feed 502
4.3.2 Temperature 503
4.3.3 pH 504
4.3.4 Dissolved Oxygen Concentration 505
4.4 Design Procedure 506
4.4.1 Design Sludge Age 506
4.4.2 Anoxic Fraction 508
4.4.3 Overall Volume, Nitrification Volume, Denitrification Volume 509
4.4.4 Daily Sludge Production 509
4.4.5 Effluent COD 510
4.4.6 Effluent TKN 510
4.4.7 Aerated Mixed Liquor Recirculation Optimization 511
4.4.8 Effluent Total Nitrogen 512
4.4.9 Daily Oxygen Consumption and Hourly Air Flowrate 513
4.4.10 Design Parameters Optimization 515
4.5 Design Example 515
4.5.1 Solution 516
4.5.2 Some Design Evaluations 525
Nomenclature 527
References 532
11 Closed Ecological Systems, Space Life Support and Biospherics 535
1 Introduction 536
2 Terminology of Closed Ecological Systems: From Laboratory Ecospheres to Manmade Biospheres 537
2.1 Materially-Closed Ecospheres 538
2.2 Bioregenerative Technology 538
2.3 Controlled Environmental Life Support Systems 538
2.4 Closed Ecological Systems for Life Support 539
2.5 Biospheric Systems 539
3 Different Types of Closed Ecological Systems 540
3.1 Research Programs in the United States 540
3.1.1 CELSS Program of NASA 540
3.1.2 Biosphere Design: Lessons from the Biosphere 2 Experiment 548
3.1.3 Mars on Earth® Closed Ecological System Project 557
3.2 Russian Research in Closed Ecosystems 560
3.2.1 Experimental Facilities of IBMP (Moscow) 560
3.2.2 Experiments with Bios-3 (Institute of Biophysics, Krasnoyarsk) 565
3.3 European Research on Closed Ecological Systems 569
3.3.1 The Closed Equilibrated Biological Aquatic System 570
3.3.2 The MELiSSA (Micro-Ecological Life Support System Alternative) Project 572
3.4 Japanese Research in Closed Ecological Systems 574
4 Conclusion 577
References 579
12 Natural Environmental Biotechnology 584
1 Aquaculture Treatment: Water Hyacinth System 585
1.1 Description 585
1.2 Applications 585
1.3 Limitations 586
1.4 Design Criteria 586
1.5 Performance 587
2 Aquaculture Treatment: Wetland System 587
2.1 Description 587
2.2 Constructed Wetlands 588
2.3 Applications 590
2.4 Limitations 590
2.5 Design Criteria 590
2.6 Performance 590
3 Evapotranspiration System 593
3.1 Description 593
3.2 Applications 594
3.3 Limitations 594
3.4 Design Criteria 594
3.5 Performance 595
3.6 Costs 595
4 Land Treatment: Rapid Rate System 595
4.1 Description 596
4.2 Applications 598
4.3 Limitations 598
4.4 Design Criteria 598
4.5 Performance 599
4.6 Costs 600
5 Land Treatment: Slow Rate System 601
5.1 Description 601
5.2 Applications 603
5.3 Limitations 603
5.4 Design Criteria 605
5.5 Performance 605
5.6 Costs 605
6 Land Treatment: Overland Flow System 607
6.1 Description 607
6.2 Application 609
6.3 Limitations 609
6.4 Design Criteria 609
6.5 Performance 610
6.6 Costs 610
7 Subsurface Infiltration 612
7.1 Description 613
7.2 Applications 615
7.3 Limitations 615
7.4 Design Criteria 615
7.5 Performance 615
8 Facultative Lagoons and Algal Harvesting 616
9 Vegetative Filter Systems 617
9.1 Conditions for System Utilization 618
9.2 Planning Considerations 618
9.3 Component Design Criteria 618
9.3.1 Settling Basin 618
9.3.2 Effluent Transport System 619
9.3.3 Junction Box 619
9.3.4 Distribution Manifold 619
9.3.5 Runoff Field Application Area 619
9.4 Specifications for Vegetation Establishment 620
9.5 Operation and Maintenance Criteria 621
9.6 Innovative Designs 621
9.7 Outline of Design Procedure 622
9.8 Procedure to Estimate Soil Infiltration Rate 622
9.9 Procedure to Determine Slopes 623
10 Design Example 624
References 626
Appendix 631
13 Aerobic and Anoxic Suspended-Growth Biotechnologies 640
1 Conventional Activated Sludge 641
1.1 Description 641
1.2 Performance and Design Criteria 643
1.3 Mechanical Aeration 644
2 High Rate Activated Sludge 645
2.1 Description 645
2.2 Performance and Design Criteria 646
3 Pure Oxygen Activated Sludge, Covered 646
3.1 Description 646
3.2 Performance and Design Criteria 647
4 Contact Stabilization 649
4.1 Description 649
4.2 Applications 649
4.3 Performance and Design Criteria 650
5 Activated Sludge With Nitrification 650
5.1 Description 650
5.2 Performance and Design Criteria 651
6 Separate Stage Nitrification 652
6.1 Description 652
6.2 Performance and Design Criteria 652
7 Separate Stage Denitrification 653
7.1 Description 653
7.2 Performance and Design Criteria 654
8 Extended Aeration 654
8.1 Description 654
8.2 Performance and Design Criteria 655
9 Oxidation Ditch 655
9.1 Description 655
9.2 Performance and Design Criteria 656
10 Powdered Activated Carbon Treatment 657
10.1 Types of PACT Systems 657
10.2 Applications and Performance 658
10.3 Process Equipment 660
10.4 Process Limitations 660
11 Carrier-Activated Sludge Processes (Captor AndCast Systems) 660
11.1 Advantages of Biomass Carrier Systems 661
11.2 The CAPTOR Process 661
11.3 Development of CAPTOR Process 661
11.4 Pilot-Plant Study 662
11.5 Full-Scale Study of CAPTOR and CAST 662
11.5.1 Full-Scale Plant Initial Results 663
11.5.2 Pilot-Scale Studies for Project Development 664
11.5.3 Full-Scale Plant Results After Modifications 666
11.5.4 Overall Conclusions 669
12 Activated Bio-Filter 670
12.1 Description 670
12.2 Applications 671
12.3 Design Criteria 671
12.4 Performance 672
13 Vertical Loop Reactor 672
13.1 Description 672
13.2 Applications 673
13.3 Design Criteria 673
13.4 Performance 674
13.5 EPA Evaluation of VLR 674
13.6 Energy Requirements 675
13.7 Costs 677
14 Phostrip Process 677
14.1 Description 677
14.2 Applications 678
14.3 Design Criteria 678
14.4 Performance 679
14.5 Cost 679
14.5.1 Construction Cost 679
14.5.2 Operation and Maintenance Cost 679
References 681
Appendix 687
14 Aerobic and Anaerobic Attached Growth Biotechnologies 688
1 Trickling Filter 688
1.1 Low-Rate Trickling Filter, Rock Media 690
1.1.1 Applications 690
1.1.2 Limitations 691
1.1.3 Performance 691
1.1.4 Design Criteria 691
1.2 High-Rate Trickling Filter, Rock Media 691
1.2.1 Applications 692
1.2.2 Limitations 692
1.2.3 Performance 693
1.2.4 Design Criteria 693
1.3 Trickling Filter, Plastic Media 693
1.3.1 Applications 695
1.3.2 Limitations 695
1.3.3 Performance 695
1.3.4 Design Criteria 695
2 Denitrification Filter 696
2.1 Denitrification Filter, Fine Media 696
2.1.1 Performance 697
2.1.2 Design Criteria 697
2.2 Denitrification Filter, Coarse Media 697
2.2.1 Performance 698
2.2.2 Design Criteria 698
3 Rotating Biological Contactor 698
3.1 Operating Characteristics 700
3.1.1 Effect of Hydraulic Loading and Staging 700
3.1.2 Effect of Residence Time 701
3.1.3 Effect of Influent BOD Concentration 702
3.1.4 Effect of Disc Speed 703
3.2 Performance 703
3.3 Design Criteria 703
4 Fluidized Bed Reactor 704
4.1 FBR Process Description 705
4.2 Process Design 706
4.3 Applications 706
4.4 Design Considerations 708
4.5 Case Study: Reno-Sparks WWTP 708
5 Packed Bed Reactor 709
5.1 Aerobic PBR 709
5.2 Anaerobic Denitrification PBR 711
5.2.1 Coarse Media Beds 711
5.2.2 Fine Media Beds 712
5.3 Applications 713
5.4 Design Criteria 713
5.4.1 Coarse Media Beds 713
5.4.2 Fine Media Beds 713
5.5 Performance 715
5.6 Case Study: Hookers Point WWTP (Tampa, Florida) 715
5.7 Energy Requirement 717
5.7.1 Coarse Media Beds 717
5.7.2 Fine Media Beds 717
5.8 Costs 717
5.8.1 Coarse Media Beds 717
5.8.2 Fine Media Beds 718
6 Biological Aerated Filter 719
6.1 BAF Process Description 719
6.2 Applications 721
6.3 BAF Media 721
6.4 Process Design and Performance 722
6.5 Solids Production 726
7 Hybrid Biological-activated Carbon Systems 727
7.1 General Introduction 727
7.2 Downflow Conventional Biological GAC Systems 727
7.2.1 Introduction 727
7.2.2 Saskatchewan-Canada Biological GAC Filtration Plant for Biological Treatment of Drinking Water 728
7.2.3 Ngau Tam Mei Water Works, Hong Kong, China 728
7.3 Upflow Fluidized Bed Biological GAC System 729
References 731
Appendix 737
15 Sequencing Batch Reactor Technology 738
1 Background and Process Description 738
2 Proprietary SBR Processes 740
2.1 Aqua SBR 741
2.2 Omniflo 741
2.3 Fluidyne 742
2.4 CASS 742
2.5 ICEAS 743
3 Description of a Treatment Plant Using SBR 744
4 Applicability 746
5 Advantages and Disadvantages 746
5.1 Advantages 746
5.2 Disadvantages 746
6 Design Criteria 747
6.1 Design Parameters 747
6.2 Construction 751
6.3 Tank and Equipment Description 752
6.4 Health and Safety 753
7 Process Performance 753
8 Operation and Maintenance 755
9 Cost 756
10 Packaged SBR for Onsite Systems 757
10.1 Typical Applications 758
10.2 Design Assumptions 758
10.3 Performance 759
10.4 Management Needs 759
10.5 Risk Management Issues 760
10.6 Costs 760
References 761
Appendix 764
16 Flotation Biological Systems 765
1 Introduction 765
2 Flotation Principles and Process Description 768
2.1 Dissolved Air Flotation 768
2.2 Air Dissolving Tube and Friction Valve 771
2.3 Flotation Chamber 772
2.4 Spiral Scoops 773
2.5 Flotation System Configurations 774
3 Flotation Biological Systems 776
3.1 General Principles and Process Description 776
3.2 Kinetics of Conventional Activated Sludge Process with Sludge Recycle 777
3.3 Kinetics of Flotation Activated Sludge Process Using Secondary Flotation 780
4 Case Studies of FBS Treatment Systems 784
4.1 Petrochemical Industry Effluent Treatment 784
4.2 Municipal Effluent Treatment 785
4.3 Paper Manufacturing Effluent Treatment 788
5 Operational Difficulties and Remedy 788
6 Summary and Conclusions 792
Abbreviations 793
Nomenclature 794
References 795
17 A/O Phosphorus Removal Biotechnology 798
1 Background and Theory 798
2 Biological Phosphorus Removal Mechanism 801
3 Process Description 803
4 Retrofitting Existing Activated Sludge Plants 805
4.1 A/O Process Performance 808
4.2 Cost for A/O Process Retrofit 808
5 A/O Process Design 809
5.1 A/O Operating Conditions 809
5.2 Design Considerations 809
5.3 Attainability of Effluent Limits 812
5.4 Oxygen Requirements for Nitrification 812
6 Dual Phosphorus Removal and Nitrogen RemovalA2/O Process 812
6.1 Phosphorus and Nitrogen Removal with the A2/O Process 815
6.2 Phosphorus and Nitrogen Removal with the Bardenpho Process 816
6.3 Phosphorus and Nitrogen Removal with the University of Capetown Process 817
6.4 Phosphorus and Nitrogen Removal with the Modified PhoStrip Process 818
7 Sludges Derived from Biological Phosphorus Processes 821
7.1 Sludge Characteristics 821
7.2 Sludge Generation Rates 821
7.3 Sludge Management 822
8 Capital and O& M Costs
References 825
Appendix 829
18 Treatment of Septage and Biosolids from Biological Processes 830
1 Introduction 831
2 Expressor Press 832
3 Som-A-System 834
4 Centripress 837
5 Hollin Iron Works Screw Press 838
6 Sun Sludge System 842
7 Wedgewater Bed 843
8 Vacuum Assisted Bed 845
9 Reed Bed 847
10 Sludge Freezing Bed 848
11 Biological Flotation 849
12 Treatment of Septage as Sludge by Land Application, Lagoon, and Composting 850
12.1 Receiving Station (Dumping Station/Storage Facilities) 850
12.2 Receiving Station (Dumping Station, Pretreatment, Equalization) 851
12.3 Land Application of Septage 852
12.4 Lagoon Disposal 853
12.5 Composting 854
12.6 Odor Control 856
13 Treatment of Septage at Biological Wastewater Treatment Plants 857
13.1 Treating Septage as a Wastewater or as a Sludge 857
13.2 Pretreatment of Septage at a Biological Wastewater Treatment Plant 857
13.3 Primary Treatment of Septage at a Biological Wastewater Treatment Plant 858
13.4 Secondary Treatment by Biological Suspended-Growth Systems 859
13.5 Secondary Treatment by Biological Attached-Growth Systems 862
13.6 Septage Treatment by Aerobic Digestion 862
13.7 Septage Treatment by Anaerobic Digestion 863
13.8 Septage Treatment by Mechanical Dewatering 864
13.9 Septage Treatment by Sand Drying Beds 864
13.10 Costs of Septage Treatment at Biological Wastewater Treatment Plants 864
References 865
19 Environmental Control of Biotechnology Industry 869
1 Introduction to Biotechnology 870
1.1 Core Technologies 871
1.2 Biotechnology Materials 872
1.3 Drug Development 873
1.4 Gene Sequencing and Bioinformatics 873
1.5 Applications of Biotechnology Information to Medicine 874
1.6 Applications of Biotechnology Information to Nonmedical Markets 874
1.7 The Regulatory Environment 874
2 General Industrial Description and Classification 875
2.1 Industrial Classification of Biotechnology Industry's Pharmaceutical Manufacturing 875
2.2 Biotechnology Industry's Pharmaceutical SIC Subcategory Under US EPA's Guidelines 876
3 Manufacturing Processes and Waste Generation 877
3.1 Fermentation 877
3.2 Biological Product Extraction 880
3.3 Chemical Synthesis 881
3.4 Formulation/Mixing/Compounding 883
3.5 Research and Development 883
4 Waste Characterization and Options for Waste Disposal 884
4.1 Waste Characteristics 884
4.2 Options for Waste Disposal 885
5 Environmental Regulations on Pharmaceutical Wastewater Discharges 887
5.1 Regulations for Direct Discharge 887
5.2 Regulations for Indirect Discharge 889
5.3 Historical View on Regulations 889
6 Waste Management 890
6.1 Strategy of Waste Management 890
6.2 In-Plant Control 891
6.2.1 Material Substitution 891
6.2.2 Process Modification 892
6.2.3 Recycling Wastewater and Recovering Materials 893
6.2.4 Water Conservation and Reuse 893
6.2.5 Segregation and Concentration of Wastes 893
6.2.6 Good Operating Practices 894
6.2.7 Reduction of Air and Dust Problems 894
6.2.8 Waste Exchanges 895
6.3 In-Plant Treatment 896
6.3.1 Cyanide Destruction Technologies 896
6.3.2 Metal Removal 898
6.3.3 Solvent Recovery and Removal 901
6.4 End-of-Pipe Treatment 904
6.4.1 Primary Treatment 905
6.4.2 Secondary Biological Treatment 906
6.4.3 Tertiary Treatment 914
6.4.4 Residue Treatment and Waste Disposal 915
7 Case Study 916
7.1 Factory Profiles 917
7.2 Raw Materials and Production Process 917
7.3 Waste Generation and Characteristics 917
7.4 End-of-Pipe Treatment 919
Nomenclature 922
References 922
Appendix: Conversion Factors for Environmental Engineers 929
1 Constants and Conversion Factors 930
2 Basic and Supplementary Units 970
3 Derived Units and Quantities 971
4 Physical Constants 973
5 Properties of Water 973
Periodic Table of the Elements 973
Index 975

Erscheint lt. Verlag 5.4.2010
Reihe/Serie Handbook of Environmental Engineering
Zusatzinfo XXIV, 975 p.
Verlagsort Totowa
Sprache englisch
Themenwelt Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Chemie
Naturwissenschaften Geowissenschaften
Technik Umwelttechnik / Biotechnologie
Schlagworte Aaerobic suspended growth systems • Aanoxic suspended growth systems • Aerobic attached-growth systems • Anaero • Anaerobic attached-growth systems • Anaerobic suspended bioprocesses and reactors • Bioengineering • Biotechnology • Isolated life support systems • Microbiological classifications • Phosphorus removal biotechnologies • Sequencing Batch Reactor
ISBN-10 1-60327-140-6 / 1603271406
ISBN-13 978-1-60327-140-0 / 9781603271400
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 19,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
DNA, RNA, Mutationen, Klonierung und Co. verstehen

von Tara Rodden Robinson; Lisa J. Spock

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
17,99

von Helmut Plattner; Joachim Hentschel

eBook Download (2017)
Thieme (Verlag)
44,99

von Helmut Plattner; Joachim Hentschel

eBook Download (2017)
Thieme (Verlag)
44,99