Introduction to Modern Time Series Analysis
Seiten
2008
|
1., 2007
Springer Berlin (Verlag)
978-3-540-68735-1 (ISBN)
Springer Berlin (Verlag)
978-3-540-68735-1 (ISBN)
- Titel erscheint in neuer Auflage
- Artikel merken
Zu diesem Artikel existiert eine Nachauflage
This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It contains the most important approaches to analyze time series which may be stationary or nonstationary.
This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It attempts to bridge the gap between methods and realistic applications. This book contains the most important approaches to analyse time series which may be stationary or nonstationary. Modelling and forecasting univariate time series is the starting point. For multiple stationary time series Granger causality tests and vector autoregressive models are presented. For real applied work the modelling of nonstationary uni- or multivariate time series is most important. Therefore, unit root and cointegration analysis as well as vector error correction models play a central part. Modelling volatilities of financial time series with autoregressive conditional heteroskedastic models is also treated.
This book presents modern developments in time series econometrics that are applied to macroeconomic and financial time series. It attempts to bridge the gap between methods and realistic applications. This book contains the most important approaches to analyse time series which may be stationary or nonstationary. Modelling and forecasting univariate time series is the starting point. For multiple stationary time series Granger causality tests and vector autoregressive models are presented. For real applied work the modelling of nonstationary uni- or multivariate time series is most important. Therefore, unit root and cointegration analysis as well as vector error correction models play a central part. Modelling volatilities of financial time series with autoregressive conditional heteroskedastic models is also treated.
Gebhard Kirchgässner ist Professor für Volkswirtschaftslehre und Ökonometrie an der Universität St. Gallen.
Introduction and Basics.- Univariate Stationary Processes.- Granger Causality.- Vector Autoregressive Processes.- Nonstationary Processes.- Cointegration.- Autoregressive Conditional Heteroskedasticity.
Erscheint lt. Verlag | 1.9.2008 |
---|---|
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 435 g |
Einbandart | Paperback |
Themenwelt | Wirtschaft ► Allgemeines / Lexika |
Schlagworte | Cointegration • Granger Causality • Unit Roots • Vector Autoregressive Models • Volatilität • Volatility • Zeitreihenanalyse |
ISBN-10 | 3-540-68735-1 / 3540687351 |
ISBN-13 | 978-3-540-68735-1 / 9783540687351 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
erfolgreich bei Bachelor- und Masterarbeit
Buch | Softcover (2024)
Vahlen (Verlag)
18,90 €
Buch | Softcover (2024)
Franz Vahlen (Verlag)
16,90 €
Buch | Softcover (2023)
Vahlen (Verlag)
18,90 €