Predictive Models for Decision Support in the COVID-19 Crisis (eBook)

eBook Download: PDF
2020 | 1st ed. 2021
VII, 98 Seiten
Springer International Publishing (Verlag)
978-3-030-61913-8 (ISBN)

Lese- und Medienproben

Predictive Models for Decision Support in the COVID-19 Crisis - Joao Alexandre Lobo Marques, Francisco Nauber Bernardo Gois, José Xavier-Neto, Simon James Fong
Systemvoraussetzungen
64,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
COVID-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting the virus, enormously tap into the power of artificial intelligence and its predictive models for urgent decision support. This book showcases a collection of important predictive models that used during the pandemic, and discusses and compares their efficacy and limitations.

Readers from both healthcare industries and academia can gain unique insights on how predictive models were designed and applied on epidemic data. Taking COVID19 as a case study and showcasing the lessons learnt, this book will enable readers to be better prepared in the event of virus epidemics or pandemics in the future.



Professor João Alexandre Lobo Marques gained his master's degree in 2007 and his PhD in 2009, both from the Federal University of Ceará, UFC, Brasil. He works as an associate professor at the University of Saint Joseph, Macau, and as a visiting associate professor at the Chinese Academy of Sciences. He is the CEO and co-founder of the XS Innovation Group in Brazil, which is focused on bioengineering innovation for education. He has published over 60 journal and conference papers, and has co-authored three books. His research interests include computational and artificial intelligence, data sciences, and neuroeconomics.

Professor Francisco Nauber Bernardo Gois is an adjunct professor at the Federal University of Ceará. He holds a master's degree and a PhD from the University of Fortaleza, gained in 2010 and 2017 respectively. He has experience in computer science, with emphasis on machine learning and software testing, deep learning, continuous integration, testing and extreme programming.

Dr José Xavier Neto holds a medical degree from Federal University of Ceará and a PhD from the University of São Paulo, which he gained in 1989 and 1993 respectively. He has worked in medical research for decades, including his current role as the Chief Health Scientist of Ceará and a Visiting Professor at the Federal University of Ceará. He has been involved in creating an experimental model for developmental neuropathy induced by the Zika virus, as well as leading a multidisciplinary team which described the first fossilised heart.

Professor Simon James Fong gained his master's degree and PhD from La Trobe University in 1994 and 1998 respectively. He has worked in several academic positions, including his current role as Associate Professor at the University of Macau. He has been on the committee for several conferences, including acting as chair, and has worked as a book series editor. His research interests include data mining, artificial intelligence, machine learning, and biomedical applications.

Erscheint lt. Verlag 30.11.2020
Reihe/Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Applied Sciences and Technology
Zusatzinfo VII, 98 p. 48 illus., 41 illus. in color.
Sprache englisch
Themenwelt Sachbuch/Ratgeber Gesundheit / Leben / Psychologie Krankheiten / Heilverfahren
Mathematik / Informatik Informatik Datenbanken
Technik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte Artificial intelligence model • Coronavirus • COVID-19 crisis • decision support • Disease Prediction • disease tracking • Epidemiologic Models • nonlinear filtering • Pandemic Modeling • predictive models
ISBN-10 3-030-61913-3 / 3030619133
ISBN-13 978-3-030-61913-8 / 9783030619138
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Diagnostik - Epidemiologie - Therapie

von Sebastian Schulz-Stübner; Markus Dettenkofer …

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
46,99
Endlich erkennen - richtig behandeln

von Wolfgang Brückle

eBook Download (2024)
Trias (Verlag)
15,99