Risk-Return Analysis Volume 3 - Harry M. Markowitz

Risk-Return Analysis Volume 3

Buch | Hardcover
336 Seiten
2020
McGraw-Hill Inc.,US (Verlag)
978-0-07-181831-5 (ISBN)
82,25 inkl. MwSt
The man who created investing as we know it provides critical insights, knowledge, and tools for generating steady profits in today’s economy.

When Harry Markowitz introduced the concept of examining and purchasing a range of diverse stocks—in essence, the practice of creating a portfolio—he transformed the world of investing. The idea was novel, even radical, when he presented it in 1952 for his dissertation. Today, it’s second-nature to the majority of investors worldwide. 

Now, the legendary economist returns with the third volume of his groundbreaking four-volume Risk-Return Analysis series, where he corrects common misperceptions about Modern Portfolio Theory (MPT) and provides critical insight into the practice of MPT over the last 60 years. He guides you through process of making rational decisions in the face of uncertainty—making this a critical guide to investing in today’s economy.

From the Laffer Curve to RDM Reasoning to Finite Ordinal Arithmetic to the ideas and concepts of some of history’s most influential thinkers, Markowitz provides a wealth and depth of financial knowledge, wisdom, and insights you would be hard pressed to find elsewhere. 

This deep dive into the theories and practices of the investing legend is what you need to master strategic portfolio management designed to generate profits in good times and bad.

 

Harry M. Markowitz is president of Harry Markowitz Co. in San Diego. In 1990, he was jointly awarded the Nobel Prize for economics with Merton Miller and William Sharpe.

 Preface 
The Rational Decision Maker
Words of Wisdom
John von Neumann

 Acknowledgments

13. Predecessors 
Introduction 
René Descartes 
There Is No “Is,” Only “Was” and “Will Be” 
Working Hypotheses 
RDM Reasoning 
David Hume 
Eudaimonia 
Financial Economic Discoveries 
Economic Analyses That Have Stood
the Test of Time 
Constructive Skepticism 
Isaac Newton, Philosopher 
Fields Other Than Physics 
Karl Popper 
Mysticism 
Caveats 
Charles Peirce 
Immanuel Kant 
What an RDM Can Know A Priori
 
14. Deduction First Principles 
Introduction 
The Great Debate 
One More Reason for Studying
Cantor’s Set Theory 
“Very Few Understood It” 
Finite Cardinal Arithmetic 
Relative Sizes of Finite Sets 
Finite Ordinal Arithmetic 
Standard Ordered Sets (SOSs) 
Finite Cardinal and Ordinal Numbers 
Cantor (101) 
Theorem 
Proof 
Corollary 
Proof 
Transfinite Cardinal Numbers 
The Continuum Hypothesis 
Transfinite Cardinal Arithmetic 
Lemma 
Transfinite Ordinal Numbers
Examples of Well-Ordered and
Not Well-Ordered Sets
Transfinite Ordinal Arithmetic
Extended SOSs
Lemma
Proof
The Paradoxes (a.k.a. Antimonies) 
Three Directions 
From Aristotle to Hume to Hilbert 
British Empiricism versus Continental
Rationalism 
Who Created What? 
Cantor Reconsidered 
Brouwer’s Objections 
Axiomatic Set Theory 
Peano’s Axioms (PAs) 
Hilbert’s Programs 
Whitehead and Russell 
Zermelo’s Axioms 
The “Axiom of Choice” 
The Trichotomy Equivalent to the Axiom of Choice 
Kurt Gödel (1906–1978) 
Thoralf Skolem (1887–1863) 

15. Logic is Programming is Logic 
Introduction 
Terminology 
Number Systems and the EAS Structures
Built on Them 
Deductive Systems as Programming Languages 
A Variety of Deductive DSSs 
Alternative Rules of Inference 
“Ladders” and “Fire Escapes” 
Organon 2000: From Ancient Greek
to “Symbolic Logic” 
So, What’s New? 
Immediate Consequences 
Two Types of Set Ownership 
Modeling Modeling 
EAS-E Deduction: Status 

16. The Infinite and The Infinitesimal 
Points and Lines 
Fields 
Constructing the Infinitesimals 
Infinite-Dimensional Utility Analysis 
The Algebraic Structure Called “A Field” 

17. Induction Theory 
Introduction 
The Story Thus Far 
Concepts 
Basic Relationships 
Examples 
“Objective” Probability 
The Formal M59 Model 
Initial Consequences 
Bayes’s Rule 
A Bayesian View of MVA 
Judgment, Approximation and Axiom III 
(1) A Philosophical Difference between
S54 and M59 
Examples of Clearly “Objective” Probabilities” 
Propositions about Propositions 
A Problem with Axiom II 
Are the πj
 Probabilities the Scaling of the πj
?
The πj
“Mix on a Par” with Objective Probabilities 

18. Induction Practice 
Introduction 
R. A. Fisher and Neyman-Pearson Hypothesis Tests 
The Likelihood Principle 
Andrei Kolmogorov 
A Model of Models 
The R.A. Fisher Argument 
Bayesian Conjugate Prior Procedures 

19. Eudaimonia 
Review 
Eudaimonia for the Masses 

Notes 

References 

Index 

Erscheinungsdatum
Zusatzinfo 40 Illustrations
Verlagsort New York
Sprache englisch
Maße 160 x 236 mm
Gewicht 558 g
Themenwelt Wirtschaft Betriebswirtschaft / Management Allgemeines / Lexika
ISBN-10 0-07-181831-6 / 0071818316
ISBN-13 978-0-07-181831-5 / 9780071818315
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
umfassende Einführung aus managementorientierter Sicht

von Jean-Paul Thommen; Ann-Kristin Achleitner …

Buch | Hardcover (2023)
Springer Gabler (Verlag)
59,99