Machine Learning with PySpark (eBook)
XVIII, 223 Seiten
Apress (Verlag)
978-1-4842-4131-8 (ISBN)
- Build a spectrum of supervised and unsupervised machine learning algorithms
- Implement machine learning algorithms with Spark MLlib libraries
- Develop a recommender system with Spark MLlib libraries
- Handle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model
Pramod Singh is an established data scientist with over eight years of experience in data and solving business challenges. He has worked in organizations such as Infosys, Tally and SapientRazorfish. Also, president of a data science meet-up group and regular speaker at various webinars. Recently spoke at major conference: GIDS 2018 and presented a session on 'Sequence Embedding in Spark' which was well received. He has an online Udemy course on machine learning.
Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark. Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You'll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification. After reading thisbook, you will understand how to use PySpark's machine learning library to build and train various machine learning models. Additionally you'll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.What You Will LearnBuild a spectrum of supervised and unsupervised machine learning algorithmsImplement machine learning algorithms with Spark MLlib librariesDevelop a recommender system with Spark MLlib librariesHandle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit modelWho This Book Is For Data science and machine learning professionals.
Pramod Singh is an established data scientist with over eight years of experience in data and solving business challenges. He has worked in organizations such as Infosys, Tally and SapientRazorfish. Also, president of a data science meet-up group and regular speaker at various webinars. Recently spoke at major conference: GIDS 2018 and presented a session on “Sequence Embedding in Spark” which was well received. He has an online Udemy course on machine learning.
Chapter 1: Evolution of Data
Chapter 2: Introduction to Machine Learning
Chapter 3: Data Processing
Chapter 4: Linear Regression
Chapter 5: Logistic Regression
Chapter 6: Random Forests
Chapter 7: Recommender Systems
Chapter 8: Clustering
Chapter 9: Natural Language Processing
Erscheint lt. Verlag | 14.12.2018 |
---|---|
Zusatzinfo | XVIII, 223 p. 150 illus., 1 illus. in color. |
Verlagsort | Berkeley |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Wirtschaft | |
Schlagworte | machine learning • PySpark • Python • Recommender Systems • Reinforcement Learning • supervised learning • Unsurpervised Learning |
ISBN-10 | 1-4842-4131-2 / 1484241312 |
ISBN-13 | 978-1-4842-4131-8 / 9781484241318 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich