Numerical Optimization with Computational Errors

Buch | Hardcover
IX, 304 Seiten
2016 | 1st ed. 2016
Springer International Publishing (Verlag)
978-3-319-30920-0 (ISBN)

Lese- und Medienproben

Numerical Optimization with Computational Errors - Alexander J. Zaslavski
101,64 inkl. MwSt

This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors  are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative.

 

This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton's method.

  

1. Introduction.- 2. Subgradient Projection Algorithm.- 3. The Mirror Descent Algorithm.- 4. Gradient Algorithm with a Smooth Objective Function.- 5. An Extension of the Gradient Algorithm.- 6. Weiszfeld's Method.- 7. The Extragradient Method for Convex Optimization.- 8. A Projected Subgradient Method for Nonsmooth Problems.- 9. Proximal Point Method in Hilbert Spaces.- 10. Proximal Point Methods in Metric Spaces.- 11. Maximal Monotone Operators and the Proximal Point Algorithm.- 12. The Extragradient Method for Solving Variational Inequalities.- 13. A Common Solution of a Family of Variational Inequalities.- 14. Continuous Subgradient Method.- 15. Penalty Methods.- 16. Newton's method.- References.- Index. 

"The author studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space. Researchers and students will find this book instructive and informative. The book has contains 16 chapters ... ." (Hans Benker, zbMATH 1347.65112, 2016)

Erscheinungsdatum
Reihe/Serie Springer Optimization and Its Applications
Zusatzinfo IX, 304 p.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Wirtschaft Betriebswirtschaft / Management
Schlagworte Calculus of Variations and Optimal Control • continuous subgradient method • extragradient methods • Mathematical Programming • mathematics and statistics • Nonlinear Programming • Numerical analysis • Operations Research, Management Science • Optimization • proximal point methods
ISBN-10 3-319-30920-X / 331930920X
ISBN-13 978-3-319-30920-0 / 9783319309200
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch (2022)
Springer Spektrum (Verlag)
79,99