Discrete Geometry and Optimization (eBook)

eBook Download: PDF
2013 | 2013
X, 336 Seiten
Springer International Publishing (Verlag)
978-3-319-00200-2 (ISBN)

Lese- und Medienproben

Discrete Geometry and Optimization -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

?Optimization has long been a source of both inspiration and applications for geometers, and conversely, discrete and convex geometry have provided the foundations for many optimization techniques, leading to a rich interplay between these subjects. The purpose of the Workshop on Discrete Geometry, the Conference on Discrete Geometry and Optimization, and the Workshop on Optimization, held in September 2011 at the Fields Institute, Toronto, was to further stimulate the interaction between geometers and optimizers. This volume reflects the interplay between these areas.

The inspiring Fejes Tóth Lecture Series, delivered by Thomas Hales of the University of Pittsburgh, exemplified this approach. While these fields have recently witnessed a lot of activity and successes, many questions remain open. For example, Fields medalist Stephen Smale stated that the question of the existence of a strongly polynomial time algorithm for linear optimization is one of the most important unsolved problems at the beginning of the 21st century. The broad range of topics covered in this volume demonstrates the many recent and fruitful connections between different approaches, and features novel results and state-of-the-art surveys as well as open problems.  

​Preface.- Discrete Geometry in Minkowski Spaces (Alonso, Martini, and Spirova).- Engineering Branch-and-Cut Algorithms for the Equicut Program (Anjos, Liers, Pardella, and Schmutzer).- An Approach to the Dodecahedral Conjecture Based on Bounds for Spherical Codes (Anstreicher).- On Minimal Tilings with Convex Cells Each Containing a Unit Ball (Bezdek).- On Volumes of Permutation Polytopes (Burggraf, De Loera, and Omar).- Monotone Paths in Planar Convex Subdivisions and Polytopes (Dumitrescu, Rote, and Toth).- Complexity of the Positive Semidefinite Matrix Completion Problem with a Rank Constraint (Eisenberg-Nagy, Laurent, and Varvitsiotis).- The Strong Dodecahedral Conjecture and Fejes Toth's Conjecture on Sphere Packings with Kissing Number Twelve (Hales).- Solving Nuclear Norm Regularized and Semidefinite Matrix Least Squares Problems with Linear Equality Constraints (Jiang, Sun, and Toh).- Techniques for Submodular Maximization (Lee).- A Further Generalization of the Colourful Caratheodory theorem (Meunier, Deza).- Expected Crossing Numbers (Mohar, Stephen).- EL-Labelings and Canonical Spanning Trees for Subword Complexes (Pilaud, Stump).- Bandwidth, Vertex Separators, and Eigenvalue Optimization (Rendl, Lisser, and Piacentini).- Exploiting Symmetries in Polyhedral Computations (Schurmann).- Conditions for Correct Sensor Network Localization Using SDP Relaxation (Shamsi, Taheri, Zhu, and Ye).- A Primal-Dual Smooth Perceptron-von Neumann Algorithm (Soheili, Pena).- Open Problems (Bezdek, Deza, and Ye). ​  

Erscheint lt. Verlag 9.7.2013
Reihe/Serie Fields Institute Communications
Fields Institute Communications
Zusatzinfo X, 336 p.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Geometrie / Topologie
Technik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte Carathéodory theorem • combinatorics • Eigenvalue Optimization • Minkowski spaces • polyhedral computations • SDP relaxation
ISBN-10 3-319-00200-7 / 3319002007
ISBN-13 978-3-319-00200-2 / 9783319002002
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich