Polyphosphoesters -  Kolio D. Troev

Polyphosphoesters (eBook)

Chemistry and Application
eBook Download: PDF | EPUB
2012 | 1. Auflage
344 Seiten
Elsevier Science (Verlag)
978-0-12-391471-2 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
118,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Polyphosphoesters are a multifunctional, environmentally friendly, and cost-efficient material, making them an important subject. The design of this type of material plays a key role in the progress of industry, agriculture, and medicine. This book introduces the chemistry, characterization and application of polyphosphoesters including comprehensive coverage of poly(alkylene H-phosphonate)s, poly(alkylene phosphate)s, poly(alkyl or aryl phosphonate)s, and poly(alkyl phosphite)s and poly(alkyl phosphinite)s. Each polymer is discussed in detail including methods, properties, and applications. This book is useful for students and practitioners preparing to work, or in the process of working, in the exciting field of polymer chemistry. - Presents a unique look at an important, multifunctional and environmentally friendly material - Outlines methods used to prepare different polyphosphoesters - Comprehensive examination of the properties of polyphosphoesters

Kolio Dimov Troev completed his undergraduate work at Higher Institute of Chemical Technology, Sofia; received his doctorate in the field of organophosphorus chemistry in 1974 from the Institute of Organic Chemistry, Bulgarian Academy of Sciences with Prof. Georgy Borissov; and was awarded the scientific degree 'Doctor of Science” in 1985 from the Institute of Polymers. In 1988, he became Professor of Chemistry at the same Institute. He has been the founding head of the laboratory 'Phosphorus-containing monomers and polymers” since 1989. His research interests are the areas of organophosphorus chemistry, especially esters of H-phosphonic acid; aminophosphonates; biodegradable, biocompatible phosphorus-containing polymers; polymer conjugates; drug delivery systems. He has been a visiting professor/lecturer in the USA (Marquette University, Tulane University), Japan (Tokyo Institute of Technology, University of Tokyo, Tohoku University, Tokyo University of Science), and Germany (Duesseldorf University). He is the author of more than 150 papers in this field published in the Phosphorus, Sulfur, Silicon and Related Elements, Heteroatom Chemistry, Journal of American Chemical Society, European Polymer Journal, Polymer, Bioorganic & Medicinal Chemistry, Journal of Medicinal Chemistry, Macromolecular Rapid Communication, Polymer Degradation and Stability, Journal of Polymer Science, Part A: Polymer Chemistry, European Journal of Medicinal Chemistry, Amino Acids, Tetrahedron Letters, Macromolecules, and RSC Advances. He is also the author of two other Elsevier books, Chemistry and Application of H-phosphonates (2006) and Polyphosphoesters: Chemistry and Application (2012). He was a director of the Institute of Polymers, Bulgarian Academy of Sciences from November 2003 to February 2012.
Polyphosphoesters are a multifunctional, environmentally friendly, and cost-efficient material, making them an important subject. The design of this type of material plays a key role in the progress of industry, agriculture, and medicine. This book introduces the chemistry, characterization and application of polyphosphoesters including comprehensive coverage of poly(alkylene H-phosphonate)s, poly(alkylene phosphate)s, poly(alkyl or aryl phosphonate)s, and poly(alkyl phosphite)s and poly(alkyl phosphinite)s. Each polymer is discussed in detail including methods, properties, and applications. This book is useful for students and practitioners preparing to work, or in the process of working, in the exciting field of polymer chemistry. - Presents a unique look at an important, multifunctional and environmentally friendly material- Outlines methods used to prepare different polyphosphoesters- Comprehensive examination of the properties of polyphosphoesters

2.1.4 Vapor Pressure Osmometry

VPO measurements were performed on a Vapor Pressure Osmometer Model 833 (UIC Inc.), calibrated with a PEG standard (1000 Da) in toluene at 50°C. The VPO yields data that seem more trustworthy. VPO is an absolute method that does not depend on the presence or absence of a particular end group. Molecular weights measured by 31P{H} NMR spectroscopy are higher, except polymer A2, which was compared with those of SEC and VPO. The results for the poly(oxyethylene H-phosphonate) A2 revealed that the values of the molecular weight determined by 31P{H} NMR, SEG, and VPO are very close. The close agreement of all three molecular weight values for these POE-H-Ps indicates that they contain almost exclusively phosphonate end groups.

According to the process of polytransesterification of dialkyl esters of H-phosphonic acid, the side reactions resulting from the breakdown of the chain growth are connected with the nucleophilic attack of the hydroxyl group on the α-carbon atom of the alkoxy groups, connected to phosphorus atom, or at the phosphorus atom—intramolecular transesterification. Obviously, these side reactions are strongly reduced because dialkyl H-phosphonate is in excess, and the content of the terminal hydroxyl groups is very low.

2.2 Thermal Properties of POE-H-Ps A, B, and C


The effect of the incorporation of phosphonate units into the PEG backbone is studied by DSC analysis of the thermal properties of POE-H-P A1, B2, and C3. The thermal parameters (glass transitions, melting points, and heat of melting) of PEGs of similar molecular weight are measured for comparison. The DSC data are listed in Table 1.11.

Table 1.11. Thermal Properties of POE-H-Ps A1, B1, C1, and PEGs

a Data taken from Ref. [120].

Each of the three POE-H-Ps has well-expressed endothermic melting, with melting points (T m) at –4.91°C, 18.19°C, and 37.48°C, respectively (Figure 1.8). These melting transitions are similar to the T m of the constituting PEG fragments (Table 1.11). In an analogous fashion, the enthalpy of melting of A, B, and C increases with their molecular weight, but it is still notably smaller than the ΔH m of pure PEGs of comparable size, indicating the existence of some unfavorable geometrical chain alignment [121].

Figure 1.8 DSC thermograms of (A) POE-H-P (A1), (B) POE-H-P (B2), and (C) POE-H-P (C3).

2.3 Reactivity of Poly(alkylene H-phosphonate)s


The reactivity of poly(alkylene H-phosphonate)s is similar to the reactivity of diesters of H-phosphonic acid. The charge distribution in the molecule of the most stable conformer of dimethyl H-phosphonate was obtained with Mulliken population analysis on the HF/6–31+G*//HF/6–31+G* level in the following.

The electron density is lower at the phosphorus atom, i.e., the phosphorus atom plays the role of an electrophilic center; the α-carbon atom of the alkoxy group is the second electrophilic center, i.e., it is another potential site of nucleophilic attack, and this nucleophilic center is considerably weaker than the phosphorus atom.

The most important reactions of poly(alkylene H-phosphonate)s are: (1) hydrolysis, due to the presence of hydrolytically unstable POC bonds; (2) oxidation; and (3) additional reactions to double bonds (carbon–carbon, Schiff base, and carbonyl group), due to the presence of the highly reactive PH group.

2.3.1 Hydrolysis of Poly(alkylene H-phosphonate)s

Poly(alkylene H-phosphonate)s are hydrolytically unstable due to the presence of the hydrolytically unstable POC bonds, and in the presence of water they undergo hydrolysis. They are very sensitive to moisture. It is known that the process of poly(alkylene H-phosphonate)s hydrolysis occurs by the same reaction as does that of low molecular diesters of H-phosphonic acid, starting with a nucleophilic attack of the oxygen atom of the hydroxyl group on the phosphorus atom—the electrophilic center (Scheme 1.7, pathway “a”).

Scheme 1.7 Hydrolysis of poly(alkylene H-phosphonate).

When the nucleophile attacks the phosphorus atom in the end groups, the corresponding alcohol is eliminated and the POH end is formed. In this case, the molecular weight does not change. When the nucleophile attacks the phosphorus atom in the repeating units, the products of hydrolysis are oligomers with end POH group and end hydroxyalkyl group, and the molecular weight of the polymer decreases. Hydrolysis of poly(alkylene H-phosphonate)s results in replacement of the substituents at the phosphorus atom. That is why hydrolysis can be easily controlled by NMR spectroscopy. The change of the type of substituents at the phosphorus atom can be detected by 31P{H} NMR spectroscopy. The experimental results revealed that the rate of hydrolysis of the end alkoxy groups (k e) is higher compared to the rate of hydrolysis (k m) of the POC bond in the main polymer chain. This conclusion is based on the 31P{H} NMR studies. The addition of water to the sample results in a decrease of the integral intensity of the signal at δ=11.17 ppm (end phosphorus atom bonded to CH3O group) and an increase in the integral intensity of the signal at δ=8.37 ppm (end phosphorus atom bonded to OH group). No changes in the integral intensity of the signal at δ=10.47 ppm for the phosphorus atom in the repeating units were observed. The ratio between integral intensity of the phosphorus atoms in the repeating units and those of the end groups remain the same. It is known that the α-carbon atom in the molecule of the dialkyl esters of H-phosphonic acid is the second electrophilic center. So, it can be assumed that hydroxyl anion attacks this α-carbon, not phosphorus. Such an attack (Scheme 1.7, pathway “b”) results in the elimination of alcohol and the formation of the POH end group. Results from 31P{H} NMR studies of the acid- and base-catalyzed hydrolysis of dimethyl H-phosphonate revealed that PO bond cleavage [79] occurs exclusively. An attack on the α-carbon during hydrolysis of the trimethyl ester of phosphoric acid is proved. If the nucleophile attacks a phosphorus atom, there are two possible products: elimination of alcohol and formation of the end POH group, or cleavage of the POC bond and formation of a monoalkyl ester of H-phosphonic acid and a polymer chain with the end hydroxyl group. The process of hydrolysis of the end alkoxy groups can be controlled by 1H NMR spectroscopy. The 1H NMR spectrum of poly(oxyethylene H-phosphonate)s is shown in Figure 1.9 reveals three types of PH protons, which appear as doublets at 6.86 with 1 J(P, H)=716.2 Hz, unit, 6.79 with 1 J(P,H)=708.8 Hz, and at 6.74 with 1 J(P,H)=690.3 Hz. These doublets can be assigned to PH proton in repeating units, in P()O3 end groups, and in P() end groups, respectively. The last end group is formed as a result of hydrolysis of the end methoxy group of the polymer. In the 31P{H} NMR spectrum (Figure 1.10), there are signals at 11.17, 10.47, and 8.37 ppm.

Figure 1.9 1H NMR spectrum of a partially hydrolyzed poly(oxyethylene H-phosphonate).

Figure 1.10 31P{H} NMR spectrum of a partially hydrolyzed poly(oxyethylene H-phosphonate).

From the 31P NMR spectrum (Figure 1.11), it can be seen that the signal at 11.17 ppm represents a doublet of sextet with 1 J(P,H)=708.8 Hz and 3 J(P,H)=10.5 Hz; at 10.47 ppm, a doublet of quintets with 1 J(P,H)=716.2 Hz and 3 J(P,H)=9.9 Hz; and at 8.37 ppm, a doublet of triplets with 1 J(P,H)=690.3 Hz and 3 J(P,H)=10.97 Hz.

Figure 1.11 31P NMR of a partially hydrolyzed poly(oxyethylene H-phosphonate).

These signals have to be assigned to the phosphorus atom in P()O3 end groups, in repeating units, and in P() end groups, respectively. The acidic POH groups are formed as a result of hydrolysis, not as a result of the attack of the hydroxyl group of PEG on the carbon atom of the end methoxy group. In the 13C{H} NMR spectrum of the poly(oxyethylene H-phosphonate), there is no signal for the CH3OCH2-carbon atom at 58.8 ppm.

pH Dependence of Hydrolysis

A combination of NMR spectroscopy and SEC is used [111] to explore the changes in the polymer structure and composition in aqueous environments. A 31P{H} NMR kinetic study of hydrolysis of PEO-H-Ps at acidic (1.66), basic (8.8), and neutral (7) pH, at an initial polymer concentration of 1.23×10–3  M, is shown in Figure 1.12.

Figure 1.12 Degree of hydrolysis of PEO-H-P A1 (Table 1.10) versus time at 1.23×10–3  M, 37°C, and various pH.

The degree of hydrolysis of PEO-H-Ps in the three different media is calculated from the increase in the concentration of phosphonic acid end groups as a function of time. It is seen that at neutral pH the degree of hydrolysis does not exceed 20% even after 24 h. In contrast, under strong acidic conditions (pH=1.66), a hydrolysis level of 90% is reached after 11 h. The process carried out under slightly basic conditions (pH=8.8) reaches 40% after 12 h. It is...

Erscheint lt. Verlag 30.1.2012
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Chemie Technische Chemie
Technik
Wirtschaft
ISBN-10 0-12-391471-X / 012391471X
ISBN-13 978-0-12-391471-2 / 9780123914712
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 29,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 5,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95