Data Mining for Biomarker Discovery (eBook)
XIV, 246 Seiten
Springer New York (Verlag)
978-1-4614-2107-8 (ISBN)
Biomarker discovery is an important area of biomedical research that may lead to significant breakthroughs in disease analysis and targeted therapy. Biomarkers are biological entities whose alterations are measurable and are characteristic of a particular biological condition. Discovering, managing, and interpreting knowledge of new biomarkers are challenging and attractive problems in the emerging field of biomedical informatics.
This volume is a collection of state-of-the-art research into the application of data mining to the discovery and analysis of new biomarkers. Presenting new results, models and algorithms, the included contributions focus on biomarker data integration, information retrieval methods, and statistical machine learning techniques.
This volume is intended for students, and researchers in bioinformatics, proteomics, and genomics, as well engineers and applied scientists interested in the interdisciplinary application of data mining techniques.
Biomarker discovery is an important area of biomedical research that may lead to significant breakthroughs in disease analysis and targeted therapy. Biomarkers are biological entities whose alterations are measurable and are characteristic of a particular biological condition. Discovering, managing, and interpreting knowledge of new biomarkers are challenging and attractive problems in the emerging field of biomedical informatics.This volume is a collection of state-of-the-art research into the application of data mining to the discovery and analysis of new biomarkers. Presenting new results, models and algorithms, the included contributions focus on biomarker data integration, information retrieval methods, and statistical machine learning techniques.This volume is intended for students, and researchers in bioinformatics, proteomics, and genomics, as well engineers and applied scientists interested in the interdisciplinary application of data mining techniques.
Preface.- 1. Data Mining Strategies Applied in Brain Injury Models (S. Mondello, F. Kobeissy, I. Fingers, Z. Zhang, R.L. Hayes, K.K.W. Wang).- Application of Decomposition Methods in the Filtering of Event Related Potentials (K. Michalopoulos, V. Iordanidou, M. Zervakis).- 3. EEG Features as Biomarkers for Discrimination of Pre-ictal states (A. Tsimpiris, D. Kugiumtzis).- 4. Using Relative Power Asymmetry as a Biomarker for Classifying Psychogenic Non-epileptic Seizure and Complex Partial Seizure Patients (J.H. Chien, D.-S. Shiau, J.C. Sackellares, J.J. Halford, K.M. Kelly, P.M. Pardalos).- 5. Classification of Tree and Network Topology Structures in Medical Images (A. Skoura, V. Megalooikonomou, A. Diamantopolous, G.C. Kagadis, D. Karnabatidis).- 6. A Framework for Multi-Modal Imagin Biomarker Extraction with Application to Brain MRI (K. Maria, V. Sakkalis, N. Graf).- 7. A Statistical Diagnostic Decision Support Tool Using Magnetic Resonance Spectroscopy Data (E. Tsolaki, E. Kousi, E. Kapsalaki, I. Dimou, K. Theodorou, G. C. Manikis, C. Kappas, I. Tsougos).- 8. Data Mining for Cancer Biomarkers with Raman Spectroscopy (M.B.Fenn, V. Pappu).- 9. Nonlinear Recognition Methods for Oncological Pathologies (G. Patrizi, V. Pietropaolo, A. Carbone, R. De Leone, L. Di Giacomo, V. Losaco, G. Patrizi).- 10. Studying Connectivity Properties in Human Protein Interation Network in Cancer Pathway (V. Tomaino, A. Arulselvan, P. Veltri, P.M. Pardalos).- 11. Modeling of Oral Cancer Progression Using Dynamic Bayesian Networks (K.P. Exarchos, G. Rigas, Y. Golestsis, D.I. Fotiadis).- 12. Neuromuscular Alterations of Upper Airway Muscles in Patients with OSAS Radiological and Histopathological Findings (P. Drakatos, D. Lykouras, F. Sampsonas, K. Karkoulias, K. Spiropoulos).- 13. Data Mining System Applied to Population Databases for Studies on Lung Cancer (J. Pérez, F. Henriques, R. Santaolaya, O. Fragoso, A. Mexicano).
Erscheint lt. Verlag | 11.2.2012 |
---|---|
Reihe/Serie | Springer Optimization and Its Applications | Springer Optimization and Its Applications |
Zusatzinfo | XIV, 246 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Mathematik / Informatik ► Mathematik | |
Medizin / Pharmazie | |
Naturwissenschaften ► Chemie | |
Technik ► Medizintechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
Wirtschaft ► Betriebswirtschaft / Management | |
Schlagworte | biochemical engineering • Bioinformatics • Biomarker discovery • biomedical engineering • biomedical informatics • biomedical research • Data Mining • Geneomics • Proteomics |
ISBN-10 | 1-4614-2107-1 / 1461421071 |
ISBN-13 | 978-1-4614-2107-8 / 9781461421078 |
Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich