Optimal Control of ODEs and DAEs (eBook)

(Autor)

eBook Download: PDF
2012
467 Seiten
De Gruyter (Verlag)
978-3-11-024999-6 (ISBN)

Lese- und Medienproben

Optimal Control of ODEs and DAEs - Matthias Gerdts
Systemvoraussetzungen
64,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The intention of this textbook is to provide both, the theoretical and computational tools that are necessary to investigate and to solve optimal control problems with ordinary differential equations and differential-algebraic equations. An emphasis is placed on the interplay between the continuous optimal control problem, which typically is defined and analyzed in a Banach space setting, and discrete optimal control problems, which are obtained by discretization and lead to finite dimensional optimization problems.



Matthias Gerdts, Universität der Bundeswehr München, Germany.

lt;!doctype html public "-//w3c//dtd html 4.0 transitional//en">

Matthias Gerdts, Universität der Bundeswehr München, Germany.

Preface 6
Contents 8
1 Introduction 12
1.1 DAE Optimal Control Problems 19
1.1.1 Perturbation Index 35
1.1.2 Consistent Initial Values 41
1.1.3 Index Reduction and Stabilization 43
1.2 Transformation Techniques 47
1.2.1 Transformation to Fixed Time Interval 47
1.2.2 Transformation to Autonomous Problem 48
1.2.3 Transformation of Tschebyscheff Problems 49
1.2.4 Transformation of L 1 -Minimization Problems 49
1.2.5 Transformation of Interior-Point Constraints 50
1.3 Overview 53
1.4 Exercises 55
2 Infinite Optimization Problems 61
2.1 Function Spaces 61
2.1.1 Topological Spaces, Banach Spaces, and Hilbert Spaces 62
2.1.2 Mappings and Dual Spaces 65
2.1.3 Derivatives, Mean-Value Theorem, and Implicit Function Theorem 67
2.1.4 Lp-Spaces, Wq P-Spaces, Absolutely Continuous Functions, Functions of Bounded Variation
2.2 The DAE Optimal Control Problem as an Infinite Optimization Problem 79
2.3 Necessary Conditions for Infinite Optimization Problems 86
2.3.1 Existence of a Solution 88
2.3.2 Conic Approximation of Sets 90
2.3.3 Separation Theorems 95
2.3.4 First Order Necessary Optimality Conditions of Fritz John Type 98
2.3.5 Constraint Qualifications and Karush–Kuhn–Tucker Conditions 106
2.4 Exercises 111
3 Local Minimum Principles 115
3.1 Problems without Pure State and Mixed Control-State Constraints 117
3.1.1 Representation of Multipliers 122
3.1.2 Local Minimum Principle 125
3.1.3 Constraint Qualifications and Regularity 129
3.2 Problems with Pure State Constraints 136
3.2.1 Representation of Multipliers 138
3.2.2 Local Minimum Principle 141
3.2.3 Finding Controls on Active State Constraint Arcs 146
3.2.4 Jump Conditions for the Adjoint 148
3.3 Problems with Mixed Control-State Constraints 152
3.3.1 Representation of Multipliers 154
3.3.2 Local Minimum Principle 156
3.4 Summary of Local Minimum Principles for Index-One Problems 159
3.5 Exercises 163
4 Discretization Methods for ODEs and DAEs 168
4.1 Discretization by One-Step Methods 170
4.1.1 The Euler Method 170
4.1.2 Runge–Kutta Methods 173
4.1.3 General One-Step Method 179
4.1.4 Consistency, Stability, and Convergence of One-Step Methods 179
4.2 Backward Differentiation Formulas (BDF) 187
4.3 Linearized Implicit Runge–Kutta Methods 189
4.4 Automatic Step-size Selection 196
4.5 Computation of Consistent Initial Values 202
4.5.1 Projection Method for Consistent Initial Values 203
4.5.2 Consistent Initial Values via Relaxation 204
4.6 Shooting Techniques for Boundary Value Problems 206
4.6.1 Single Shooting Method using Projections 207
4.6.2 Single Shooting Method using Relaxations 214
4.6.3 Multiple Shooting Method 215
4.7 Exercises 219
5 Discretization of Optimal Control Problems 226
5.1 Direct Discretization Methods 227
5.1.1 Full Discretization Approach 229
5.1.2 Reduced Discretization Approach 231
5.1.3 Control Discretization 233
5.2 A Brief Introduction to Sequential Quadratic Programming 238
5.2.1 Lagrange–Newton Method 238
5.2.2 Sequential Quadratic Programming (SQP) 240
5.3 Calculation of Derivatives for Reduced Discretization 249
5.3.1 Sensitivity Equation Approach 250
5.3.2 Adjoint Equation Approach: The Discrete Case 252
5.3.3 Adjoint Equation Approach : The Continuous Case 259
5.4 Discrete Minimum Principle and Approximation of Adjoints 265
5.4.1 Example 273
5.5 An Overview on Convergence Results 284
5.5.1 Convergence of the Euler Discretization 284
5.5.2 Higher Order of Convergence for Runge–Kutta Discretizations 287
5.6 Numerical Examples 289
5.7 Exercises 299
6 Real-Time Control 303
6.1 Parametric Sensitivity Analysis and Open-Loop Real-Time Control 304
6.1.1 Parametric Sensitivity Analysis of Nonlinear Optimization Problems 304
6.1.2 Open-Loop Real-Time Control via Sensitivity Analysis 314
6.2 Feedback Controller Design by Optimal Control Techniques 326
6.3 Model Predictive Control 336
6.4 Exercises 343
7 Mixed-Integer Optimal Control 349
7.1 Global Minimum Principle 350
7.1.1 Singular Controls 362
7.2 Variable Time Transformation Method 370
7.3 Switching Costs, Dynamic Programming, Bellman’s Optimality Principle 384
7.3.1 Dynamic Optimization Model with Switching Costs 385
7.3.2 A Dynamic Programming Approach 387
7.3.3 Examples 394
7.4 Exercises 402
8 Function Space Methods 405
8.1 Gradient Method 406
8.2 Lagrange–Newton Method 422
8.2.1 Computation of the Search Direction 428
8.3 Exercises 440
Bibliography 444
Index 466

Erscheint lt. Verlag 23.12.2012
Reihe/Serie De Gruyter Textbook
Zusatzinfo 35 b/w and 150 col. ill.
Verlagsort Berlin/Boston
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Allgemeines / Lexika
Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Technik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte Control Theory • DAE • ODE • Optimal • Optimization • Ordinary differential equations
ISBN-10 3-11-024999-5 / 3110249995
ISBN-13 978-3-11-024999-6 / 9783110249996
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 18,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Geschichte der Mathematik in Alt-Griechenland und im Hellenismus

von Dietmar Herrmann

eBook Download (2024)
Springer Berlin Heidelberg (Verlag)
39,99