Reactive Search and Intelligent Optimization (eBook)

eBook Download: PDF
2008 | 2009
X, 196 Seiten
Springer US (Verlag)
978-0-387-09624-7 (ISBN)

Lese- und Medienproben

Reactive Search and Intelligent Optimization - Roberto Battiti, Mauro Brunato, Franco Mascia
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Reactive Search and Intelligent Optimization is an excellent introduction to the main principles of reactive search, as well as an attempt to develop some fresh intuition for the approaches. The book looks at different optimization possibilities with an emphasis on opportunities for learning and self-tuning strategies. While focusing more on methods than on problems, problems are introduced wherever they help make the discussion more concrete, or when a specific problem has been widely studied by reactive search and intelligent optimization heuristics.

Individual chapters cover reacting on the neighborhood; reacting on the annealing schedule; reactive prohibitions; model-based search; reacting on the objective function; relationships between reactive search and reinforcement learning; and much more. Each chapter is structured to show basic issues and algorithms; the parameters critical for the success of the different methods discussed; and opportunities for the automated tuning of these parameters.


Reactive Search and Intelligent Optimization is an excellent introduction to the main principles of reactive search, as well as an attempt to develop some fresh intuition for the approaches. The book looks at different optimization possibilities with an emphasis on opportunities for learning and self-tuning strategies. While focusing more on methods than on problems, problems are introduced wherever they help make the discussion more concrete, or when a specific problem has been widely studied by reactive search and intelligent optimization heuristics.Individual chapters cover reacting on the neighborhood; reacting on the annealing schedule; reactive prohibitions; model-based search; reacting on the objective function; relationships between reactive search and reinforcement learning; and much more. Each chapter is structured to show basic issues and algorithms; the parameters critical for the success of the different methods discussed; and opportunities forthe automated tuning of these parameters.

Contents 6
Acknowledgments 9
Introduction: Machine Learning for Intelligent Optimization 11
1.1 Parameter Tuning and Intelligent Optimization 14
1.2 Book Outline 17
Reacting on the Neighborhood 19
2.1 Local Search Based on Perturbations 19
2.2 Learning How to Evaluate the Neighborhood 23
2.3 Learning the Appropriate Neighborhood in Variable Neighborhood Search 24
2.4 Iterated Local Search 28
Reacting on the Annealing Schedule 34
3.1 Stochasticity in Local Moves and Controlled Worsening of Solution Values 34
3.2 Simulated Annealing and Asymptotics 35
3.3 Online Learning Strategies in Simulated Annealing 38
Reactive Prohibitions 43
4.1 Prohibitions for Diversification 43
4.2 Reactive Tabu Search: Self-Adjusted Prohibition Period 57
4.3 Implementation: Storing and Using the Search History 60
Reacting on the Objective Function 67
5.1 Dynamic Landscape Modifications to Influence Trajectories 67
5.2 Eliminating Plateaus by Looking Inside the Problem Structure 74
Model-Based Search 76
6.1 Models of a Problem 76
6.2 An Example 78
6.3 Dependent Probabilities 80
6.4 The Cross-Entropy Model 82
6.5 Adaptive Solution Construction with Ant Colonies 84
6.6 Modeling Surfaces for Continuous Optimization 86
Supervised Learning 89
7.1 Learning to Optimize, from Examples 89
7.2 Techniques 90
7.3 Selecting Features 108
7.4 Applications 112
Reinforcement Learning 122
8.1 Reinforcement Learning Basics: Learning from a Critic 122
8.2 Relationships Between Reinforcement Learning and Optimization 130
Algorithm Portfolios and Restart Strategies 134
9.1 Introduction: Portfolios and Restarts 134
9.2 Predicting the Performance of a Portfolio from its Component Algorithms 135
9.3 Reactive Portfolios 139
9.4 Defining an Optimal Restart Time 140
9.5 Reactive Restarts 143
Racing 145
10.1 Exploration and Exploitation of Candidate Algorithms 145
10.2 Racing to Maximize Cumulative Reward by Interval Estimation 146
10.3 Aiming at the Maximum with Threshold Ascent 148
10.4 Racing for Off-Line Configuration of Metaheuristics 149
Teams of Interacting Solvers 154
11.1 Complex Interaction and Coordination Schemes 154
11.2 Genetic Algorithms and Evolution Strategies 155
11.3 Intelligent and Reactive Solver Teams 159
11.4 An Example: Gossiping Optimization 162
Metrics, Landscapes, and Features 166
12.1 How to Measure and Model Problem Difficulty 166
12.2 Phase Transitions in Combinatorial Problems 167
12.3 Empirical Models for Fitness Surfaces 168
12.4 Measuring Local Search Components: Diversification and Bias 173
Open Problems 180
References 183
Index 196

Erscheint lt. Verlag 16.12.2008
Reihe/Serie Operations Research/Computer Science Interfaces Series
Operations Research/Computer Science Interfaces Series
Zusatzinfo X, 196 p. 74 illus.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Technik Bauwesen
Technik Maschinenbau
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte algorithm • algorithms • Artificial Intelligence • experimental algorithmics • Heuristics • learning • linear optimization • machine learning • Optimization • reactive search • stochastic local search
ISBN-10 0-387-09624-8 / 0387096248
ISBN-13 978-0-387-09624-7 / 9780387096247
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43