Silver Metallization (eBook)
XII, 123 Seiten
Springer London (Verlag)
978-1-84800-027-8 (ISBN)
Here is the first book to discuss the current understanding of silver metallization and its potential as a future interconnect material for integrated circuit technology. With the lowest resistivity of all metals, silver is an attractive interconnect material for higher current densities and faster switching speeds in integrated circuits. Over the past ten years, extensive research has been conducted to address the issues that have prevented silver from being used as an interconnect metal. The authors provide details on a wide range of experimental, characterization, and analysis techniques. The book is written for students, scientists, engineers, and technologists in the fields of integrated circuits and microelectronics research and development.
James W. Mayer is the Galvin Professor of Science and Engineering and Regents Professor at Arizona State University. He has investigated thin film phenomena and metallization for integrated circuits over the past two decades. Previously he was the F.N. Bard Professor of Materials Science at Cornell University and before this, Professor of Electrical Engineering at the California Institute of Technology. He received his Ph.D. in Physics at Purdue University and was a member of the technical staff at Hughes Research Laboratories. He is known for his work on nuclear particle detectors and Rutherford backscattering analysis. He is a Fellow of the IEEE and the American Physical Society and a member of the National Academy of Engineering.
Terry L. Alford is a professor of materials engineering in the Department of Chemical and Materials Engineering at Arizona State University. Dr Alford received his Ph.D. from Cornell University and was previously employed by Texas Instruments. He has had extensive consulting experience with Philips Semiconductors, Freescale Semiconductors, and Motorola. He has published extensively on the properties of thin films and the use of analysis techniques to characterize the films.
Daniel Adams is a professor of physics in the Department of Physics at the University of the Western Cape, South Africa. He has extensively investigated silver and copper metallization for the past ten years. Dr Adams received his PhD in Materials Engineering from Arizona State University, USA.
Silver has the lowest resistivity of all metals, which makes it an attractive interconnect material for higher current densities and faster switching speeds in integrated circuits. Over the past ten years, extensive research has been conducted to address the thermal and electrical stability, as well as processing issues which, to date, have prevented the implementation of silver as an interconnect metal. Silver Metallization: Stability and Reliability is the first book to discuss current knowledge of silver metallization and its potential as a favorable candidate for implementation as a future interconnect material for integrated circuit technology.Silver Metallization: Stability and Reliability provides detailed information on a wide range of experimental, characterization and analysis techniques. It also presents the novel approaches used to overcome the thermal and electrical stability issues associated with silver metallization. Readers will learn about the: - preparation and characterization of elemental silver thin films and silver-metal alloys; - formation of diffusion barriers and adhesion promoters; - evaluation of the thermal stability of silver under different annealing conditions; - evaluation of the electrical properties of silver thin films under various processing conditions; - methods of dry etching of silver lines and the integration of silver with low-k dielectric materials. As a valuable resource in this emerging field; Silver Metallization: Stability and Reliability will be very useful to students, scientists, engineers and technologists in the fields of integrated circuits and microelectronics research and development.
James W. Mayer is the Galvin Professor of Science and Engineering and Regents Professor at Arizona State University. He has investigated thin film phenomena and metallization for integrated circuits over the past two decades. Previously he was the F.N. Bard Professor of Materials Science at Cornell University and before this, Professor of Electrical Engineering at the California Institute of Technology. He received his Ph.D. in Physics at Purdue University and was a member of the technical staff at Hughes Research Laboratories. He is known for his work on nuclear particle detectors and Rutherford backscattering analysis. He is a Fellow of the IEEE and the American Physical Society and a member of the National Academy of Engineering.Terry L. Alford is a professor of materials engineering in the Department of Chemical and Materials Engineering at Arizona State University. Dr Alford received his Ph.D. from Cornell University and was previously employed by Texas Instruments. He has had extensive consulting experience with Philips Semiconductors, Freescale Semiconductors, and Motorola. He has published extensively on the properties of thin films and the use of analysis techniques to characterize the films.Daniel Adams is a professor of physics in the Department of Physics at the University of the Western Cape, South Africa. He has extensively investigated silver and copper metallization for the past ten years. Dr Adams received his PhD in Materials Engineering from Arizona State University, USA.
Introduction
Silver Thin Film Analysis
Diffusion Barriers and Self-encapsulation
Thermal Stability
Silver Electromigration Resistance
Integration Issues
Summary
Erscheint lt. Verlag | 27.10.2007 |
---|---|
Reihe/Serie | Engineering Materials and Processes | Engineering Materials and Processes |
Zusatzinfo | XII, 123 p. 66 illus. |
Verlagsort | London |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik | |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Wirtschaft | |
Schlagworte | Diffusion • electromigration • Integrated circuit • Integrated Circuit Interconnects • Metal • metallization • PAS • Silver • static-induction transistor • Thermal and Electrical Stability • Thin Films |
ISBN-10 | 1-84800-027-8 / 1848000278 |
ISBN-13 | 978-1-84800-027-8 / 9781848000278 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich