Semiparametric and Nonparametric Methods in Econometrics (eBook)

eBook Download: PDF
2010 | 2009
X, 276 Seiten
Springer New York (Verlag)
978-0-387-92870-8 (ISBN)

Lese- und Medienproben

Semiparametric and Nonparametric Methods in Econometrics - Joel L. Horowitz
Systemvoraussetzungen
223,63 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Standard methods for estimating empirical models in economics and many other fields rely on strong assumptions about functional forms and the distributions of unobserved random variables. Often, it is assumed that functions of interest are linear or that unobserved random variables are normally distributed. Such assumptions simplify estimation and statistical inference but are rarely justified by economic theory or other a priori considerations. Inference based on convenient but incorrect assumptions about functional forms and distributions can be highly misleading. Nonparametric and semiparametric statistical methods provide a way to reduce the strength of the assumptions required for estimation and inference, thereby reducing the opportunities for obtaining misleading results. These methods are applicable to a wide variety of estimation problems in empirical economics and other fields, and they are being used in applied research with increasing frequency.

The literature on nonparametric and semiparametric estimation is large and highly technical. This book presents the main ideas underlying a variety of nonparametric and semiparametric methods. It is accessible to graduate students and applied researchers who are familiar with econometric and statistical theory at the level taught in graduate-level courses in leading universities. The book emphasizes ideas instead of technical details and provides as intuitive an exposition as possible. Empirical examples illustrate the methods that are presented.

This book updates and greatly expands the author's previous book on semiparametric methods in econometrics. Nearly half of the material is new.


Standard methods for estimating empirical models in economics and many other fields rely on strong assumptions about functional forms and the distributions of unobserved random variables. Often, it is assumed that functions of interest are linear or that unobserved random variables are normally distributed. Such assumptions simplify estimation and statistical inference but are rarely justified by economic theory or other a priori considerations. Inference based on convenient but incorrect assumptions about functional forms and distributions can be highly misleading. Nonparametric and semiparametric statistical methods provide a way to reduce the strength of the assumptions required for estimation and inference, thereby reducing the opportunities for obtaining misleading results. These methods are applicable to a wide variety of estimation problems in empirical economics and other fields, and they are being used in applied research with increasing frequency.The literature on nonparametric and semiparametric estimation is large and highly technical. This book presents the main ideas underlying a variety of nonparametric and semiparametric methods. It is accessible to graduate students and applied researchers who are familiar with econometric and statistical theory at the level taught in graduate-level courses in leading universities. The book emphasizes ideas instead of technical details and provides as intuitive an exposition as possible. Empirical examples illustrate the methods that are presented.This book updates and greatly expands the author s previous book on semiparametric methods in econometrics. Nearly half of the material is new.

Preface 6
Contents 8
1 Introduction 12
1.1 The Goals of This Book 12
1.2 Dimension Reduction 14
1.3 Are Semiparametric and Nonparametric Methods Really Different from Parametric Ones? 17
2 Single-Index Models 18
2.1 Definition of a Single-Index Model of a Conditional Mean Function 18
2.2 Multiple-Index Models 21
2.3 Identification of Single-Index Models 23
2.3.1 Conditions for Identification of ß and G 23
2.3.2 Identification Analysis When X Is Discrete 26
2.4 Estimating G in a Single-Index Model 28
2.5 Optimization Estimators of 30
2.5.1 Nonlinear Least Squares 31
2.5.2 Choosing the Weight Function 36
2.5.3 Semiparametric Maximum-Likelihood Estimation of Binary-Response Models 38
2.5.4 Semiparametric Maximum-Likelihood Estimation of Other Single-Index Models 40
2.5.5 Semiparametric Rank Estimators 40
2.6 Direct Semiparametric Estimators 41
2.6.1 Average-Derivative Estimators 42
2.6.2 An Improved Average-Derivative Estimator 46
2.6.3 Direct Estimation with Discrete Covariates 48
2.6.4 One-Step Asymptotically Efficient Estimators 53
2.7 Bandwidth Selection 55
2.8 An Empirical Example 57
2.9 Single-Index Models of Conditional Quantile Functions 58
3 Nonparametric Additive Models and Semiparametric Partially Linear Models 63
3.1 Nonparametric Additive Models with Identity Link Functions 65
3.1.1 Marginal Integration 65
3.1.2 Backfitting 73
3.1.3 Two-Step, Oracle-Efficient Estimation 74
3.1.3.1 Informal Description of the Estimator 75
3.1.3.2 Asymptotic Properties of the Two-Stage Estimator 76
3.2 Estimation with a Nonidentity Link Function 80
3.2.1 Estimation 81
3.2.2 Bandwidth Selection 85
3.3 Estimation with an Unknown Link Function 87
3.4 Estimation of a Conditional Quantile Function 90
3.5 An Empirical Example 93
3.6 The Partially Linear Model 95
3.6.1 Identification 95
3.6.2 Estimation of 96
3.6.3 Partially Linear Models of Conditional Quantiles 100
3.6.4 Empirical Applications 101
4 Binary-Response Models 104
4.1 Random-Coefficients Models 104
4.2 Identification 105
4.2.1 Identification Analysis When X Has Bounded Support 109
4.2.2 Identification When X Is Discrete 110
4.3 Estimation 112
4.3.1 Estimating 113
4.3.2 Estimating ß: The Maximum-Score Estimator 114
4.3.3 Estimating ß: The Smoothed Maximum-Score Estimator 117
4.4 Extensions of the Maximum-Score and Smoothed Maximum-Score Estimators 127
4.4.1 Choice-Based Samples 128
4.4.2 Panel Data 132
4.4.3 Ordered-Response Models 137
4.5 Other Estimators for Heteroskedastic Binary-Response Models 140
4.6 An Empirical Example 141
5 Statistical Inverse Problems 143
5.1 Deconvolution in a Model of Measurement Error 144
5.1.1 Rate of Convergence of the Density Estimator 146
5.1.2 Why Deconvolution Estimators Converge Slowly 149
5.1.3 Asymptotic Normality of the Density Estimator 151
5.1.4 A Monte Carlo Experiment 152
5.2 Models for Panel Data 152
5.2.1 Estimating fU and fe 154
5.2.2 Large Sample Properties of fne and fnU 156
5.2.3 Estimating First-Passage Times 159
5.2.4 Bias Reduction 160
5.2.5 Monte Carlo Experiments 162
5.3 Nonparametric Instrumental-Variables Estimation 164
5.3.1 Regularization Methods 172
5.3.1.1 Tikhonov Regularization 173
5.3.1.2 Regularization by Series Truncation 177
5.4 Nonparametric Instrumental-Variables Estimation When T Is Unknown 179
5.4.1 Estimation by Tikhonov Regularization When T Is Unknown 179
5.4.1.1 Computation of ˆg 185
5.4.2 Estimation by Series Truncation When T Is Unknown 186
5.4.2.1 Computation of ˆg 192
5.5 Other Approaches to Nonparametric Instrumental-Variables Estimation 193
5.5.1 Nonparametric Quantile IV 193
5.5.2 Control Functions 194
5.6 An Empirical Example 195
6 Transformation Models 197
6.1 Estimation with Parametric T and Nonparametric F 198
6.1.1 Choosing the Instruments 201
6.1.2 The Box--Cox Regression Model 202
6.1.3 The Weibull Hazard Model with Unobserved Heterogeneity 204
6.2 Estimation with Nonparametric T and Parametric F 209
6.2.1 The Proportional Hazards Model 209
6.2.2 The Proportional Hazards Model with Unobserved Heterogeneity 212
6.2.3 The Case of Discrete Observations of Y 216
6.2.4 Estimating 217
6.2.5 Other Models in Which F Is Known 221
6.3 Estimation When Both T and F Are Nonparametric 223
6.3.1 Derivation of Horowitz’s Estimators of T and F 224
6.3.2 Asymptotic Properties of Tn and Fn 227
6.3.3 Chen’s Estimator of T 229
6.3.4 The Proportional Hazards Model with Unobserved Heterogeneity 231
6.4 Predicting Y Conditional on X 238
6.5 An Empirical Example 238
Appendix: Nonparametric Density Estimationand Nonparametric Regression 241
6.1 Nonparametric Density Estimation 241
A.1.1 Density Estimation When X Is Multidimensional 245
A.1.2 Estimating Derivatives of a Density 247
6.2 Nonparametric Mean Regression 248
A.2.1 The Nadaraya--Watson Kernel Estimator 248
A.2.2 Local-Linear Mean Regression 250
A.2.3 Series Estimation of a Conditional Mean Function 253
A.2.3.1 Hilbert Spaces 253
A.2.3.2 Nonparametric Regression 256
6.3 Nonparametric Quantile Regression 257
A.3.1 A Kernel-Type Estimator of qa(x) 258
A.3.2 Local-Linear Estimation of qa(x) 259
A.3.3 Series Estimation of qa(x) 261
References 264
Index 274

Erscheint lt. Verlag 10.7.2010
Reihe/Serie Springer Series in Statistics
Springer Series in Statistics
Zusatzinfo X, 276 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Wirtschaft Allgemeines / Lexika
Wirtschaft Volkswirtschaftslehre Ökonometrie
Schlagworte Econometrics • nonparametric methods • Regression • semiparametric methods • statistical method • Statistical Theory
ISBN-10 0-387-92870-7 / 0387928707
ISBN-13 978-0-387-92870-8 / 9780387928708
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quellen der Erkenntnis oder digitale Orakel?

von Bernd Simeon

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
16,99
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
4,48