Machine Learning in Team Sports - Rabiu Muazu Musa, Anwar P.P. Abdul Majeed, Norlaila Azura Kosni, Mohamad Razali Abdullah

Machine Learning in Team Sports (eBook)

Performance Analysis and Talent Identification in Beach Soccer & Sepak-takraw
eBook Download: PDF
2020 | 1st ed. 2020
X, 61 Seiten
Springer Singapore (Verlag)
978-981-15-3219-1 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This brief highlights the application of performance analysis tools in data acquisition, and various machine learning algorithms for evaluating team performance as well as talent identification in beach soccer and sepak takraw. Numerous performance indicators and human performance parameters are considered based on their relevance to each sport. The findings presented here demonstrate that the key performance indicators as well as human performance parameters can be used in the future evaluation of team performance as well as talent identification in these sports. Accordingly, they offer a valuable resource for coaches, club managers, talent identification experts, performance analysts and other relevant stakeholders involved in performance assessments. 

Dr. Rabiu Muazu Musa holds a PhD degree from the Universiti Sultan Zainal Abidin (UniSZA), Malaysia. He obtained his MSc in Sports Science from the UniSZA in 2015 and his BSc in Physical and Health Education from Bayero University Kano, Nigeria in 2011. His PhD research focused on the development of multivariate and machine learning models for gauging athletic performance. His research interests include performance analysis, health promotion, sports psychology, exercise science, talent identification, testing and measurement, as well as machine learning. He is currently a lecturer at the Centre for Fundamental and Continuing Education, Universiti Malaysia Terengganu.

Dr. Anwar P.P. Abdul Majeed holds a B.Eng. in Mechanical Engineering from the Universiti Teknologi MARA (UiTM), Malaysia; an MSc in Nuclear Engineering from Imperial College London, UK; and a PhD in Rehabilitation Robotics from the Universiti Malaysia Pahang (UMP). He is currently serving as a senior lecturer at the Faculty of Manufacturing and Mechatronics Engineering Technology, UMP and is an active research member of the Innovative Manufacturing, Mechatronics and Sports (iMAMS) Laboratory, UMP. His research interests include rehabilitation robotics, computational mechanics, applied mechanics, sports engineering, sports performance analysis, and machine learning.

Dr. Norlaila Azura Kosni obtained her first degree and Master's degree in Sports Science from the Universiti Malaysia Sabah (UMS). She attained her PhD in Sports Science at the Universiti Sultan Zainal Abidin, with a focus on performance models for youth athletes. Her research interests include sports biomechanics, athletic performance, sports analytics, and sports talent identification and development.

Assoc. Prof. Dr. Mohamad Razali Abdullah obtained his Bachelor of Physical Education from the Universiti Putra Malaysia (UPM) in 1989; his MSc in Sport and Exercise Science from the University of Wales Institute, Cardiff in 1998; and his PhD in Sports Science from the UPM in 2007. His research interests include motor control, sports biomechanics, motor performance and machine learning in sports.


This brief highlights the application of performance analysis tools in data acquisition, and various machine learning algorithms for evaluating team performance as well as talent identification in beach soccer and sepak takraw. Numerous performance indicators and human performance parameters are considered based on their relevance to each sport. The findings presented here demonstrate that the key performance indicators as well as human performance parameters can be used in the future evaluation of team performance as well as talent identification in these sports. Accordingly, they offer a valuable resource for coaches, club managers, talent identification experts, performance analysts and other relevant stakeholders involved in performance assessments. 
Erscheint lt. Verlag 17.2.2020
Reihe/Serie SpringerBriefs in Applied Sciences and Technology
SpringerBriefs in Applied Sciences and Technology
Zusatzinfo X, 61 p. 26 illus., 24 illus. in color.
Sprache englisch
Themenwelt Sachbuch/Ratgeber Sport
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Medizin / Pharmazie Pflege
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Technik Medizintechnik
Weitere Fachgebiete Sportwissenschaft
Schlagworte Physical fitness parameters • Psycho-maturity in sports • Sports Engineering • Sports mechanics • Sports performance assessment • Sports psychology • Talent identification in sports
ISBN-10 981-15-3219-2 / 9811532192
ISBN-13 978-981-15-3219-1 / 9789811532191
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43