Oil Crops (eBook)

eBook Download: PDF
2009 | 2010
XVI, 548 Seiten
Springer New York (Verlag)
978-0-387-77594-4 (ISBN)

Lese- und Medienproben

Oil Crops -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
When one is privileged to participate long enough in a professional capacity, certain trends may be observed in the dynamics of how challenges are met or how problems are solved. Agricultural research is no exception in view of how the plant sciences have moved forward in the past 30 years. For example, the once grand but now nearly forgotten art of whole plant physiology has given way almost completely to the more sophisticated realm of molecular biology. What once was the American Society of Plant Physiologists' is now the American Society of Plant Molecular Biology; a democratic decision to indemnify efforts to go beyond the limits of the classical science and actually begin to understand the underlying biological basis for genetic regulation of metabolic mechanisms in plants. Yet, as new technologies open windows of light on the inner workings of biological processes, one might reminisce with faint nostalgia on days long past when the artisans of plant physiology, biochemistry, analytical chemistry and other scientific disciplines ebbed and waned in prominence. No intentional reference is made here regarding Darwinism; the plant sciences always have been extremely competitive. Technology is pivotal. Those who develop and/or implement innovative concepts typically are regarded as leaders in their respective fields. Each positive incremental step helps bring recognition and the impetus to push a scientific discipline forward with timely approaches to address relevant opportunities.

Johann Vollmann is a native of Vienna, Austria. He is teaching courses on plant breeding as an associate professor at the University of Natural Resources and Applied Life Sciences, Vienna. His main research interests are in the genetic improvement of quality characteristics of soybean and in pre-breeding of minor oil crops. Johann Vollmann has been a co-developer of soybean and camelina germplasm adapted to Central European conditions. He also served as a secretary general to EUCARPIA, the European Association for Research in Plant Breeding.

Istvan Rajcan grew up in Novi Sad, Serbia and moved to Canada in 1991. He completed his Ph.D. degree in canola breeding and biotechnology at the University of Guelph in Guelph, Ontario. He is a Professor and soybean breeder in the Department of Plant Agriculture at the University of Guelph and teaches plant breeding. Main areas of interest are genetics of modified seed composition for functional foods and bioproducts and crop adaptation to mega-environments. He serves on the editorial board four international journals including Theoretical and Applied Genetics. He has won several research awards, trained 13 graduate students and developed 30 soybean varieties.


When one is privileged to participate long enough in a professional capacity, certain trends may be observed in the dynamics of how challenges are met or how problems are solved. Agricultural research is no exception in view of how the plant sciences have moved forward in the past 30 years. For example, the once grand but now nearly forgotten art of whole plant physiology has given way almost completely to the more sophisticated realm of molecular biology. What once was the American Society of Plant Physiologists' is now the American Society of Plant Molecular Biology; a democratic decision to indemnify efforts to go beyond the limits of the classical science and actually begin to understand the underlying biological basis for genetic regulation of metabolic mechanisms in plants. Yet, as new technologies open windows of light on the inner workings of biological processes, one might reminisce with faint nostalgia on days long past when the artisans of plant physiology, biochemistry, analytical chemistry and other scientific disciplines ebbed and waned in prominence. No intentional reference is made here regarding Darwinism; the plant sciences always have been extremely competitive. Technology is pivotal. Those who develop and/or implement innovative concepts typically are regarded as leaders in their respective fields. Each positive incremental step helps bring recognition and the impetus to push a scientific discipline forward with timely approaches to address relevant opportunities.

Johann Vollmann is a native of Vienna, Austria. He is teaching courses on plant breeding as an associate professor at the University of Natural Resources and Applied Life Sciences, Vienna. His main research interests are in the genetic improvement of quality characteristics of soybean and in pre-breeding of minor oil crops. Johann Vollmann has been a co-developer of soybean and camelina germplasm adapted to Central European conditions. He also served as a secretary general to EUCARPIA, the European Association for Research in Plant Breeding. Istvan Rajcan grew up in Novi Sad, Serbia and moved to Canada in 1991. He completed his Ph.D. degree in canola breeding and biotechnology at the University of Guelph in Guelph, Ontario. He is a Professor and soybean breeder in the Department of Plant Agriculture at the University of Guelph and teaches plant breeding. Main areas of interest are genetics of modified seed composition for functional foods and bioproducts and crop adaptation to mega-environments. He serves on the editorial board four international journals including Theoretical and Applied Genetics. He has won several research awards, trained 13 graduate students and developed 30 soybean varieties.

Foreword 6
Preface 10
Contents 12
Contributors 14
Oil Crop Breeding and Genetics 18
1.1 Introduction 18
1.2 Domestication and Genetic Diversity 21
1.2.1 Domestication of Oil Crops 22
1.2.2 Oil Crop Germplasm 23
1.2.3 Genetic Diversity in Oil Crops - Selected Examples 25
1.3 Recent Milestones in Oil Crop Breeding 27
1.4 Specific Breeding Objectives 29
1.4.1 Oil Content 29
1.4.1.1 Oil Bodies and the Cytology of Oil Content 29
1.4.1.2 Botanical Features of Oil Content 30
1.4.1.3 Genetics of Oil Content 33
1.4.1.4 Breeding for Oil Content 35
1.4.2 Altered Seed Composition for Health and Industrial Applications 36
1.5 Perspectives in Oil Crop Breeding 37
1.5.1 Technology 37
1.5.2 Biology 38
1.5.3 Utilization 39
References 39
Modifying Vegetable Oils for Food and Non-food Purposes 48
2.1 Introduction 48
2.2 Modulating the Fatty Acid Content of Plant Oils for Food Uses 48
2.2.1 Fatty Acid Profile and Oil Functionality 48
2.2.2 Conventional Approaches to Fatty Acid Modification 49
2.2.3 Novel Fatty Acid Profiles in Soybean Derived from the Tools of Biotechnology 50
2.3 Next Generation Edible Oils: Producing Long Chain omega-3 Fatty Acids in Seed Oils 52
2.3.1 Engineering Complex Pathways into Plant Seeds 52
2.3.2 LCPUFA Production in Plants 55
2.3.3 EPA Production in Plants via the Delta6 Desaturase Pathway 56
2.3.4 EPA Production in Plants via the Delta9 Elongase Pathway 59
2.3.5 DHA Production in Plants via the Aerobic Elongation/Desaturation Pathways 60
2.3.6 DHA Production in Plants via the Anaerobic Polyketide Synthase Pathway 61
2.4 Modifying Vegetable Oils for Non-food Purposes 61
2.4.1 Non-food Uses of Plant Oils 61
2.4.2 High Oleic Acid Soybean Oil 62
2.4.3 Metabolic Engineering of Soybean for the Production of Oils with High-Value Industrial Fatty Acids 63
References 66
Soybean 74
3.1 Introduction 74
3.2 Origin and Domestication 75
3.3 Varietal Groups 78
3.4 Genetic Resources 79
3.5 Major Breeding Accomplishments 83
3.6 Current Goals of Breeding 88
3.6.1 Seed Oil Concentration 88
3.6.2 Fatty Acid Modification 88
3.6.3 Reduced Saturates 89
3.6.4 Increased Saturates 89
3.6.5 Increased Monounsaturates 89
3.6.6 Trans-fat Reduction 89
3.6.7 Increased Polyunsaturates 90
3.6.8 Increasing Nutraceuticals in Seed 90
3.7 Breeding Methods and Techniques 91
3.7.1 Gain from Selection 91
3.7.2 Sources of Gains from Selection 92
3.7.3 Parent and Population Structure 92
3.7.4 Advancing Toward Homozygosity 94
3.7.5 Participatory Plant Breeding 95
3.7.6 Selection Among Pure Lines 95
3.7.7 Intra-cultivar Variation 96
3.7.8 New Technology in Plant Breeding Operations 96
3.8 Integration of New Biotechnologies into Breeding Programs 97
3.8.1 Reduced Saturates - Germplasm and Biotechnologies 98
3.8.2 Increased Saturates - Germplasm and Biotechnologies 98
3.8.3 Increased Monounsaturates - Germplasm and Biotechnologies 99
3.8.4 Reduced 18:3 - Germplasm and Biotechnologies 100
3.8.5 Increased Polyunsaturated Fatty Acids - Germplasm and Biotechnologies 100
3.8.6 Oil Constituents with High Value 101
3.8.6.1 Sterols 101
3.8.6.2 Tocopherols 101
References 101
Oilseed Rape 108
4.1 Introduction 108
4.2 Origin and Domestication 108
4.3 Varietal Groups 110
4.4 Genetic Resources 110
4.4.1 Genetic Diversity in the Primary Gene Pool 110
4.4.2 Expanding Genetic Variability by Interspecific Hybridisation 112
4.5 Major Breeding Achievements 115
4.6 Current Goals of Breeding 118
4.6.1 Seed and Oil Yield Potential and Stability 118
4.6.2 Improvement of Seed Components 120
4.7 Breeding Methods and Techniques 122
4.7.1 Traditional Line Breeding 123
4.7.2 Hybrid Breeding and Cytoplasmic Male Sterility Systems 123
4.8 Introduction of New Biotechnologies into Breeding Programs 126
4.8.1 Tissue Culture and Haploid Techniques 126
4.8.2 Genetic Modification 127
4.8.3 Genetic Mapping, Genome Analysis and Marker-Assisted Selection 128
4.8.3.1 Genetic Maps and QTL Analysis 128
4.8.3.2 Male Sterility 130
4.8.3.3 Oil Content and Quality 130
4.8.3.4 Yellow Seed Character 131
4.8.3.5 Resistance to Biotic and Abiotic Stress 131
4.8.3.6 Novel Genomic Tools 133
4.8.3.7 Utilization of Synteny to Arabidopsis 133
4.9 Seed Production 134
References 136
Other Brassicas 144
5.1 Introduction 144
5.2 Origin and Domestication 145
5.2.1 Brassica rapa 145
5.2.2 Brassica juncea 145
5.2.3 Brassica carinata 146
5.3 Varietal Groups 146
5.3.1 Open Pollinated, Synthetic, and Hybrid Cultivars 146
5.3.2 Winter and Spring Cultivars 147
5.3.3 Wild-Type, Single-Zero, and Double-Zero Cultivars 147
5.4 Genetic Resources 147
5.5 Major Breeding Achievements 148
5.5.1 Oil Quality 148
5.5.2 Meal Quality 149
5.6 Current Goals of Breeding 149
5.6.1 Seed Yield and Adaptation 149
5.6.2 Vernalization Requirements and Flowering Time 150
5.6.3 Male Sterility 150
5.6.4 Self-Compatibility 150
5.6.5 Seed Colour, Oil, Protein and Fibre Content 151
5.6.6 Oil Quality 151
5.6.7 Seed Meal Quality 151
5.6.8 Disease Resistance 152
5.6.9 Insect Resistance 152
5.7 Breeding Methods and Techniques 153
5.7.1 Developing New Sources of Variation 153
5.7.2 Breeding of Line and Population Cultivars 154
5.7.3 Breeding of Hybrid Cultivars 155
5.7.4 Breeding Techniques 156
5.7.4.1 Selfing and Artificial Hybridization 156
5.7.4.2 Techniques Used for Agronomic Evaluation 156
5.7.4.3 Laboratory Techniques for Seed Quality Evaluation 157
5.8 Integration of New Biotechnologies into Breeding Programs 157
5.8.1 Genetic Markers and Genetic Linkage Maps 157
5.8.2 Molecular Breeding 159
5.8.2.1 Germplasm Characterization 159
5.8.2.2 Molecular Mapping 159
Seed Colour 159
Oil Content and Quality 159
Glucosinolate Content 160
Morphological and Agronomic Traits 160
Male Sterility 160
Vernalization Requirements and Flowering Time 160
Disease Resistance 161
5.8.3 Marker Assisted Selection 161
5.8.4 Transgenic Breeding 162
5.9 Seed Production 162
References 163
Sunflower 171
6.1 Introduction 171
6.2 Origin and Domestication 172
6.3 Varietal Groups 173
6.4 Genetic Resources 175
6.4.1 Germplasm Collection and Maintenance 176
6.4.1.1 Ex Situ World Collections 176
6.4.1.2 Preservation of In Situ Resources 176
6.4.1.3 Core Collections 177
6.4.1.4 Genetic Stock Collections 177
6.4.2 Germplasm Evaluation 178
6.4.2.1 Agronomic and Physiological Traits 178
6.4.2.2 Cytoplasmic Male Sterility 178
6.4.2.3 Disease and Insect Resistance 180
6.4.2.4 Oil and Protein Content and Quality 182
6.5 Major Breeding Achievements 183
6.5.1 Development of High Oil Germplasm in the Former USSR 183
6.5.2 Utilization of the Inbred-Hybrid Method 183
6.5.3 Development of New Types of Oil 184
6.6 Current Goals of Breeding 185
6.6.1 Seed Yield 185
6.6.2 Morpho-Physiological Traits 185
6.6.2.1 Plant Height 185
6.6.2.2 Head Size, Shape and Inclination 186
6.6.2.3 Flowering and Maturity Dates 186
6.6.2.4 Pollen Self-Compatibility and Flower Characteristics 187
6.6.2.5 Male Sterility 187
6.6.2.6 Oil, Protein and Fibre Contents 187
6.6.2.7 Oil Quality 188
6.6.2.8 Seed Meal Quality 191
6.6.2.9 Disease Resistance 192
6.6.2.10 Broomrape Resistance 193
6.6.2.11 Insect Resistance 194
6.6.2.12 Resistance to Bird Depredation 194
6.6.2.13 Resistance to Abiotic Stresses 194
6.6.2.14 Herbicide Resistance 195
6.6.2.15 Nonoilseed Sunflower 195
6.7 Breeding Methods and Techniques 196
6.7.1 Breeding Methods 196
6.7.1.1 Obtaining or Generating Sources of Genetic Variability 196
The Use of Existing Genetic Variation 196
Mutagenesis 197
6.7.1.2 Methods for Improving Source Populations 197
6.7.1.3 Methods for Improving Open Pollinated Cultivars 199
Mass Selection 199
Head to Row Selection (Pustovoit’s Method of Reserves) 200
6.7.1.4 Methods for Improving Hybrid Cultivars 200
6.7.1.5 Methods for Producing Hybrid Seed 202
6.7.2 Breeding Techniques 203
6.7.2.1 Procedures for Selfing and Artificial Hybridization 203
6.7.2.2 Techniques Used for Interspecific Hybridization 203
6.7.2.3 Field Plot Techniques for Cultivar Evaluation 204
6.7.2.4 Techniques Used for Greenhouses and Off-Season Nurseries 205
6.7.2.5 Laboratory Techniques for Seed Quality Evaluation 205
6.7.2.6 Techniques for Disease Resistance and Broomrape Evaluation 206
6.8 Integration of New Biotechnologies into Breeding Programs 207
6.8.1 Genetic Markers and Genetic Linkage Maps in Sunflower 208
6.8.1.1 Random DNA Markers and Maps Based on them 208
Restriction Fragment Length Polymorphism (RFLP) Markers 208
Random Amplified Polymorphic DNA (RAPD) Markers 211
Amplified Fragment Length Polymorphism (AFLP) Markers 211
Simple Sequence Repeats (SSRs) or Microsatellites 212
6.8.1.2 Gene-Targeted Markers and Maps Based on Them 213
Markers Based on Sequenced RFLP-cDNA Probes 213
Markers Based on ESTs 213
6.8.1.3 Functional Markers 214
6.8.2 Molecular Breeding 214
6.8.2.1 Germplasm Characterization 214
6.8.2.2 Molecular Mapping of Simply Inherited and Complex Traits 215
Oil Content 215
Oil Quality 216
Fatty Acids 216
Tocopherols 218
Disease Resistance 218
Developmental and Agronomic Traits 220
Male Sterility 220
Self-incompatibility and Seed Dormancy 221
Embryogenesis 221
Days to Flowering 221
Resistance to Abiotic Stresses 221
Resistance to Herbicides 222
6.8.2.3 Marker Assisted Selection 222
MAS Optimization 222
Marker Validation and Refinement 222
Assays Optimization and Cost Reduction 224
MAS in Sunflower Breeding Programs 224
6.8.3 Transgenic Breeding 226
6.9 Seed Production 227
6.9.1 Maintenance and Increase of Parental Lines 228
6.9.2 Commercial Hybrid Seed Production 229
6.9.2.1 Isolation 229
6.9.2.2 Plant Population and Planting Methods 229
6.9.2.3 Pollination 230
6.9.2.4 Roguing 230
6.9.2.5 Harvesting and Processing 230
References 231
Flax 249
7.1 Production and Utilization 249
7.2 Origin and Taxonomy 251
7.3 Variety Development 252
7.4 Variety Development Objectives 257
7.4.1 Yield 257
7.4.2 Maturity 257
7.4.3 Lodging Resistance 257
7.4.4 Grain Quality 258
7.4.4.1 Oil and Fatty Acid Composition 258
7.4.4.2 Protein 260
7.4.4.3 Mucilage 261
7.4.4.4 Lignan 261
7.4.4.5 Anti-nutritionals 261
7.4.4.6 Seed Color 262
7.4.4.7 Disease Resistance 262
7.5 Germplasm Sources 263
7.6 Breeding Procedures 264
7.6.1 Selection of Parents 264
7.6.2 Methods of Combining Parents 265
7.6.3 Methods of Breeding 266
7.6.3.1 Pedigree 266
7.6.3.2 Single Seed Descent 267
7.6.3.3 Backcross 268
7.6.3.4 Bulk 268
7.6.3.5 Doubled Haploids 268
7.7 Summary 269
References 269
Cotton 272
8.1 Introduction 272
8.2 Origin and Domestication 273
8.2.1 Taxonomy 274
8.2.2 Domestication 276
8.3 Varietal Groups 278
8.4 Genetic Resources 279
8.5 Major Breeding Achievements 282
8.5.1 Host Plant Resistance 282
8.5.2 Abiotic Stress Tolerance 283
8.5.3 Agronomic Adaptation 284
8.5.4 Fiber Quality 285
8.5.5 Seed Traits 286
8.6 Current Goals of Breeding 286
8.6.1 USDA 286
8.6.2 State Universities 287
8.6.3 Private Companies 288
8.7 Breeding Methods and Techniques 290
8.8 Integration of New Biotechnologies in Breeding Programs 292
8.9 Seed Production 294
References 295
Peanut 301
9.1 Introduction 301
9.2 Origin and Domestication 303
9.3 Varietal Groups 306
9.3.1 Market Types in the United States 306
9.4 Genetic Resources 307
9.5 Major Breeding Achievements 308
9.5.1 Florunner Cultivar 309
9.5.2 High Oleic Acid Content 309
9.5.3 Resistance to Leaf Spots, Root-Knot Nematode, and Spotted Wilt 310
9.6 Goals of Peanut Breeding 312
9.6.1 Goals for the Farmer 312
9.6.2 Goals for the Seed Producer/Sheller 313
9.6.3 Goals for the Manufacturer and Consumer 314
9.7 Breeding Methods and Techniques 315
9.8 Integration of New Biotechnologies into Breeding Programs 316
9.8.1 Marker Development in Peanut 317
9.8.2 Molecular Maps of Peanut 318
9.8.3 Gene Sequencing in Arachis 319
9.8.4 Reverse Genetic Technologies 320
9.8.5 Peanut Transformation 320
9.9 Seed Production 321
References 321
Castor 330
10.1 Introduction 330
10.2 Origin and Domestication 331
10.3 Varietal Groups 332
10.4 Genetic Resources 332
10.5 Major Breeding Achievements 333
10.5.1 Fatty Acid Composition 333
10.5.2 Castor Toxins 334
10.5.3 Castor Allergens 336
10.5.4 Qualitative Traits 336
10.5.5 Quantitative Traits 336
10.6 Breeding Methods and Techniques 339
10.6.1 Mass Selection 339
10.6.2 Individual Plant Selection with Progeny Tests 339
10.6.3 Methods Involving Sexual Hybridization 340
10.6.3.1 Pedigree Method 340
10.6.3.2 Bulk Method 340
10.6.3.3 Single Seed Descent Method 341
10.6.3.4 Backcross Method 341
10.6.3.5 Recurrent Selection 341
10.7 Integration of New Biotechnologies in Breeding Programs 341
10.8 Seed Production 342
References 342
Oil Palm 346
11.1 Introduction 346
11.2 Origin and Domestication 347
11.3 Varietal Groups 348
11.4 Genetic Resources 350
11.5 Major Breeding Achievements 351
11.5.1 Tenera Hybrid Improvement 351
11.5.2 Cloning Improvement 352
11.5.3 Improvement in Other Traits 352
11.6 Current Goals of Breeding 353
11.6.1 Oil Yield 354
11.6.2 Oil Quality 356
11.7 Breeding Methods and Techniques 356
11.7.1 Breeding Methods 356
11.7.2 Breeding Techniques 360
11.7.3 Field Experimental Techniques 361
11.7.3.1 Mating Designs 361
11.7.3.2 Field Experimentation 361
11.8 Integration of New Biotechnologies in Breeding Programmes 363
11.8.1 Tissue Culture for Clonal Propagation of Oil Palm 363
11.8.2 Tissue Culture Process 364
11.8.3 Commercial Planting of Oil Palm Clones 367
11.8.4 Clonal Fidelity and Performance Tests 368
11.8.5 Molecular Breeding 368
11.9 Commercial Seed Processing 371
11.10 Oil Palm Seed Market 372
11.11 Concluding Remarks 373
References 373
Coconut 381
12.1 Introduction 381
12.2 Origin and Domestication 382
12.3 Varietal Groups 384
12.4 Genetic Resources 387
12.5 Major Breeding Achievements 389
12.6 Current Goals of Breeding 392
12.7 Breeding Methods and Techniques 393
12.8 Integration of New Biotechnologies in Breeding Programmes 396
12.8.1 Genetic Diversity Analysis 396
12.8.2 Genetic Relatedness 397
12.8.3 Hybridity Testing and Variety Identification 400
12.8.4 Somoclonal Variation in Coconut Plants 400
12.8.5 Linkage Mapping and QTL Identification 400
12.8.6 Synteny Studies 401
12.8.7 In Vitro Culture 402
12.9 Seed Production 402
References 403
Olive 409
13.1 Introduction 409
13.1.1 Overall Importance of the Crop and Production Areas 409
13.1.2 Major Problems of Olive Cultivation 409
13.1.3 Types of Olive Oil and Characteristics 411
13.1.4 Ancient and Recent History of Olive Cultivation 413
13.2 Origin and Domestication 413
13.3 Varietal Groups 414
13.3.1 Cultivated Olive Germplasm 414
13.3.2 Cultivar Classification 415
13.3.3 Identification of Olive Cultivars 415
13.4 Genetic Resources 416
13.4.1 Taxonomy and Distribution of Olea europaea 416
13.4.2 Natural Diversity of Olive 416
13.4.3 Wild Olives 417
13.4.4 Related Subspecies 419
13.5 Major Breeding Achievements 419
13.6 Current Goals of Breeding 421
13.7 Breeding Methods and Techniques 421
13.7.1 Classical Breeding 421
13.7.2 Clonal Selection 422
13.7.3 Sanitary Selection 422
13.7.4 Breeding by Intervarietal Crossing 422
13.7.5 Marker Assisted Breeding 423
13.8 Integration of New Biotechnologies in Breeding Programmes 424
13.8.1 Organogenesis and Regeneration 425
13.8.2 Genetic Manipulation 425
13.8.3 Other In Vitro Technologies 426
13.9 Concluding Remarks 427
References 427
Safflower 434
14.1 Introduction 434
14.2 Origin and Domestication 434
14.3 Species Groupings Related to Breeding of Cultivated Safflower 435
14.4 Genetic Resources 437
14.5 Major Breeding Achievements 440
14.6 Current Goals of Breeding 441
14.7 Crossing Techniques and Breeding Methods 444
14.7.1 Crossing Techniques 444
14.7.2 Breeding Methods 448
14.7.2.1 Pure-Line Selection and Mass Selection 448
14.7.2.2 Pedigree Breeding 448
14.7.2.3 Backcross Breeding 448
14.7.2.4 Recurrent Selection 449
14.7.2.5 Hybrid Breeding 449
USA 449
India 450
14.8 Integration of New Biotechnologies in Breeding Programs 451
14.9 Seed Production 453
References 455
Poppy 459
15.1 Introduction 459
15.2 Origin and Domestication 461
15.3 Genetic Resources and Varietal Groups 462
15.4 Current Goals of Breeding 465
15.5 Breeding Methods and Techniques 467
15.5.1 Biological and Genetic Characteristics 467
15.5.2 Breeding Methods 470
15.6 Integration of New Biotechnologies in Breeding Programmes 471
15.7 Major Breeding Achievements 472
15.7.1 Industrial Cultivars for Alkaloid Production 472
15.7.2 Culinary Cultivars for Poppy Seed and Oil 473
References 474
Hull-Less Oil Seed Pumpkin 479
16.1 Introduction 479
16.1.1 Use of Hull-Less Pumpkin Seed As a Food Crop 479
16.1.2 Origin of the Hull-Less Seeded Phenotype in Pumpkin 480
16.2 Nutritionally Relevant Components of Pumpkin Seeds 481
16.2.1 Antioxidant Activity of Pumpkin Seed Oil 484
16.2.2 Treatment of Symptomatic BPH with beta-Sitosterol 485
16.3 Genetics of the Hull-Less Seed Character 485
16.4 Current Goals of Oil Seed Pumpkin Breeding 490
16.4.1 Increasing Seed Yield 491
16.4.2 Components of Yield 491
16.4.3 Seed Size and Seed Number 493
16.4.4 Bush Growth Habit 494
16.4.5 Disease Resistance 496
16.4.5.1 Resistance to Fruit Rots 496
16.4.6 Expanding the Genetic Base in Oil Seed Pumpkins 497
16.5 Integration of New Biotechnologies in Breeding Programs 498
References 499
Maize for Oil 503
17.1 Introduction 503
17.2 Maize Kernel Structure and Composition 503
17.3 Modern Maize Breeding 504
17.3.1 Germplasm 504
17.3.2 Heterosis and the Inbred/Hybrid Concept 506
17.3.3 Inbred Line Development 507
17.3.4 Hybrid Development 508
17.4 Recurrent Selection 509
17.5 The Illinois High-Oil/Low-Oil Long-Term Selection Experiment 509
17.6 Other Breeding Programs for High-Oil 511
17.6.1 ‘Other’ Recurrently Selected High-Oil Populations 512
17.6.2 Commercial Breeding Activities for High-Oil 512
17.6.3 TopCrossreg Method for High-Oil Maize Hybrids 513
Epilogue 513
References 513
New Crops Breeding: Lesquerella 517
18.1 Introduction 517
18.2 Origin and Domestication 517
18.3 Genetic Resources 519
18.4 Major Breeding Achievements 520
18.5 Current Breeding Goals 521
18.5.1 Oil Content and Fatty Acid Profile 521
18.5.2 Seed Yield 522
18.5.3 Wider Adaptation and Shorter Growing Period 522
18.5.4 Autofertility 522
18.6 Breeding Methods and Techniques 523
18.7 Integration of Information Technology and New Biotechnologies 524
18.8 Seed Production 524
References 524
Cuphea 527
19.1 Introduction 527
19.2 Domestication and Breeding History 528
19.2.1 Oil Crop Breeding 529
19.3 Genetic Resources 530
19.4 Advances in Cuphea Production 531
19.4.1 ‘PSR23’ Cuphea 531
19.4.2 Commercialization 533
19.4.3 Product Development 534
19.5 Current Breeding Goals 534
19.5.1 Lauric Acid Accumulation 534
19.5.2 Insect Resistance 536
19.5.3 Anthocyanin Mutants 537
19.6 Breeding Methods 539
19.6.1 Genetic Engineering 539
19.7 Concluding Remarks 539
References 539
Index 544

Erscheint lt. Verlag 18.9.2009
Reihe/Serie Handbook of Plant Breeding
Handbook of Plant Breeding
Zusatzinfo XVI, 548 p.
Verlagsort New York
Sprache englisch
Themenwelt Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Naturwissenschaften Biologie Botanik
Technik
Weitere Fachgebiete Land- / Forstwirtschaft / Fischerei
Schlagworte Biotechnology • Coconut • cotton • currentjks • flax • Genetic Engineering • Hull • lesquerella • Maize • new crops • oil palm • Olive • poppy • Safflower • soybean • Vegetable oils
ISBN-10 0-387-77594-3 / 0387775943
ISBN-13 978-0-387-77594-4 / 9780387775944
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
69,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
69,99