Introduction to Spintronics - Supriyo Bandyopadhyay, Marc Cahay

Introduction to Spintronics

Buch | Hardcover
536 Seiten
2008
Crc Press Inc (Verlag)
978-0-8493-3133-6 (ISBN)
93,50 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Presents an introduction to the physics and engineering of spin. This book builds the knowledge vital for conducting independent research in spintronics. It explains the use of spin for encoding information in classical and quantum systems and how spin-orbit interaction forms the basis for spintronic field effect transistors.
Using spin to replace or augment the role of charge in signal processing devices, computing systems and circuits may improve speed, power consumption, and device density in some cases—making the study of spinone of the fastest-growing areas in micro- and nanoelectronics. With most of the literature on the subject still highly advanced and heavily theoretical, the demand for a practical introduction to the concepts relating to spin has only now been filled. Explains effects such as giant magnetoresistance, the subject of the 2007 Nobel Prize in physics

Introduction to Spintronics is an accessible, organized, and progressive presentation of the quantum mechanical concept of spin. The authors build a foundation of principles and equations underlying the physics, transport, and dynamics of spin in solid state systems. They explain the use of spin for encoding qubits in quantum logic processors; clarify how spin-orbit interaction forms the basis for certain spin-based devices such as spintronic field effect transistors; and discuss the effects of magnetic fields on spin-based device performance.

Covers active hybrid spintronic devices, monolithic spintronic devices, passive spintronic devices, and devices based on the giant magnetoresistance effect

The final chapters introduce the burgeoning field of spin-based reversible logic gates, spintronic embodiments of quantum computers, and other topics in quantum mechanics that have applications in spintronics. An Introduction to Spintronics provides the knowledge and understanding of the field needed to conduct independent research in spintronics.

The Early History of Spin
Spin
The Bohr Planetary Model and Space Quantization
The Birth of "Spin"
The Stern-Gerlach Experiment
The Advent of Spintronics



The Quantum Mechanics of Spin
Pauli Spin Matrices
The Pauli Equation and Spinors
More on the Pauli Equation
Extending the Pauli Equation - the Dirac Equation
The Time Independent Dirac Equation
Appendix



The Bloch Sphere
The Spinor and the "Qubit"
The Bloch Sphere Concept



Evolution of a Spinor
Spin-1/2 Particle in a Constant Magnetic Field: Larmor Precession
Preparing to Derive the Rabi Formula
The Rabi Formula



The Density Matrix
The Density Matrix Concept: Case of a Pure State
Properties of the Density Matrix
Pure Versus Mixed State
Concept of the Bloch Ball
Time Evolution of the Density Matrix: Case of Mixed State
The Relaxation Times T1 and T2 and the Bloch Equations



Spin Orbit Interaction
Spin Orbit Interaction in a Solid



Magneto-Electric Sub-Bands in Quantum Confined Structures in the Presence of Spin-Orbit Interaction
Dispersion Relations of Spin Resolved Magneto-Electric Subbands and Eigenspinors in a Two-Dimensional Electron Gas in the Presence of Spin-Orbit Interaction
Dispersion Relations of Spin Resolved Magneto-Electric Subbands and Eigenspinors in a One-Dimensional Electron Gas in the Presence of Spin-Orbit Interaction
Magnetic Field Perpendicular to Wire Axis and the Electric Field Causing Rashba Effect
Eigenenergies of Spin Resolved Subbands and Eigenspinors in a Quantum Dot in the Presence of Spin-Orbit Interaction
Why Are the Dispersion Relations Important?
The Three Types of Hall Effect



Spin Relaxation
Spin Relaxation Mechanisms
Spin relaxation in a quantum dot
Is the Effective Magnetic Field due to Spin-Orbit Interaction Proportional to v or k?
The Spin Galvanic Effect



Exchange Interaction
Identical Particles and the Pauli Exclusion Principle
Hartree and Hartree-Fock Approximations
The Role of Exchange in Ferromagnetism
The Heisenberg Hamiltonian



Spin Transport in Solids
The Drift-Diffusion Model
The Semiclassical Model
Concluding Remarks



Passive Spintronic Devices and Related Concepts
Spin Valve
Spin Injection Efficiency
Hysteresis in Spin Valve Magnetoresistance
Giant Magnetoresistance
Spin Accumulation
Spin Injection Across a Ferromagnet/Metal Interface
Spin Injection in a Ferromagnet/Semiconductor/Ferromagnet Spin Valve
Spin Extraction at a Ferromagnetic Contact/Semiconductor Interface



Hybrid Spintronics
Spin based transistors
Spin Field Effect Transistors (SPINFET)
Device Performance of SPINFETs
Power Dissipation Estimates
Other Types of SPINFETs
The Importance of the Spin Injection Efficiency
Transconductance, Gain, Bandwidth and Isolation
Spin Bipolar Junction Transistors (SBJT)
GMR-based Transistors
Concluding Remarks



Monolithic Spintronics
Monolithic Spintronics
Reading and Writing Single Spin
Single Spin Logic
Energy Dissipation Issues
Comparison Between Hybrid and Monolithic Spintronics
Concluding Remarks



Quantum Computing with Spins
The Quantum Inverter
Can the NAND Gate Be Switched Without Dissipating Energy?
Universal Reversible Gate: The Toffoli-Fredkin Gate
A-Matrix
Quantum Gates
Qubits
Superposition States
Quantum Parallelism
Universal Quantum Gates
A 2-Qubit "Spintronic" Universal Quantum Gate
Conclusion



A Quantum Mechanics Primer
Blackbody Radiation and Quantization of Electromagnetic Energy
The Concept of the Photon
Wave-Particle Duality and the De Broglie Wavelength
Postulates of Quantum Mechanics
Some Elements of Semiconductor Physics: Particular Applications in Nanostructures
The Rayleigh-Ritz Variational Procedure
The Transfer Matrix Formalism

Erscheint lt. Verlag 1.4.2008
Zusatzinfo 1335 equations; 11 Tables, black and white; 114 Illustrations, black and white
Verlagsort Bosa Roca
Sprache englisch
Maße 156 x 234 mm
Gewicht 907 g
Themenwelt Technik Elektrotechnik / Energietechnik
ISBN-10 0-8493-3133-1 / 0849331331
ISBN-13 978-0-8493-3133-6 / 9780849331336
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Wegweiser für Elektrofachkräfte

von Gerhard Kiefer; Herbert Schmolke; Karsten Callondann

Buch | Hardcover (2024)
VDE VERLAG
48,00