Multi-Criteria Decision-Making for Renewable Energy -  Mohamed Abdel-Basset,  Mohamed Elhoseny,  Abduallah Gamal,  Md Alamgir Hossain

Multi-Criteria Decision-Making for Renewable Energy (eBook)

Methods, Applications, and Challenges
eBook Download: EPUB
2023 | 1. Auflage
300 Seiten
Elsevier Science (Verlag)
978-0-443-13389-3 (ISBN)
Systemvoraussetzungen
148,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Multi-Criteria Decision-Making for Renewable Energy: Methods, Applications, and Challenges brings together the latest fuzzy and soft computing methods, models, and algorithms as applied to the field of renewable energy and supported by specific application examples and case studies. The book begins by approaching renewable energy sources, challenges and factors that affect their development, as well as green renewable energy sites and the utilization of fuzzy multi-criteria decision-making (MCDM) techniques in these broad contexts, as well as utilization in addressing the various environmental, economic, and social barriers to ensuring the sustainability of energy resources. Detailed chapters focus on the application of multi-criteria decision-making methods for planning, modeling and prioritization in specific areas of renewable energy, including solar energy, wind farms, solar-powered hydrogen production plants, biofuel production, energy storage, hydropower, and marine energy. Finally, future opportunities and research directions are explored. - Provides a set of multi-criteria techniques to address challenges across renewable energy - Reviews and analyzes the current state-of-the-art and identifies future opportunities and directions - Offers clear examples, case studies and practical applications of the described concepts

Dr. Mohamed Abdel-Basset is Associate Professor and Head of the Department of Computer Science, within the Faculty of Computers and Informatics, at Zagazig University, Egypt. He received his B.Sc., M.Sc and Ph.D in operations research at the Faculty of Computers and Informatics, Zagazig University. Dr. Abdel-Basset's research interests are in Optimization, Operations Research, Data Mining, Computational Intelligence, Applied Statistics, Decision Support Systems, Robust Optimization, Engineering Optimization, Multiobjective Optimization, Swarm Intelligence, Evolutionary Algorithms, and Artificial Neural Networks. He is currently working on the application of multi-objective and robust meta-heuristic optimization techniques. Dr. Abdel-Basset is an Editor or Reviewer for several international journals and conferences, and has published more than 100 articles in international journals and conference proceedings.
Multi-Criteria Decision-Making for Renewable Energy: Methods, Applications, and Challenges brings together the latest fuzzy and soft computing methods, models, and algorithms as applied to the field of renewable energy and supported by specific application examples and case studies. The book begins by approaching renewable energy sources, challenges and factors that affect their development, as well as green renewable energy sites and the utilization of fuzzy multi-criteria decision-making (MCDM) techniques in these broad contexts, as well as utilization in addressing the various environmental, economic, and social barriers to ensuring the sustainability of energy resources. Detailed chapters focus on the application of multi-criteria decision-making methods for planning, modeling and prioritization in specific areas of renewable energy, including solar energy, wind farms, solar-powered hydrogen production plants, biofuel production, energy storage, hydropower, and marine energy. Finally, future opportunities and research directions are explored. - Provides a set of multi-criteria techniques to address challenges across renewable energy- Reviews and analyzes the current state-of-the-art and identifies future opportunities and directions- Offers clear examples, case studies and practical applications of the described concepts
Erscheint lt. Verlag 26.10.2023
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie
Technik Elektrotechnik / Energietechnik
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 0-443-13389-1 / 0443133891
ISBN-13 978-0-443-13389-3 / 9780443133893
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 17,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
18,68