Magnetic Resonance Brain Imaging (eBook)

Modelling and Data Analysis Using R
eBook Download: PDF
2023 | 2nd ed. 2023
XXI, 258 Seiten
Springer International Publishing (Verlag)
978-3-031-38949-8 (ISBN)

Lese- und Medienproben

Magnetic Resonance Brain Imaging - Jörg Polzehl, Karsten Tabelow
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book discusses modelling and analysis of Magnetic Resonance Imaging (MRI) data of the human brain. For the data processing pipelines we rely on R, the software environment for statistical computing and graphics. The book is intended for readers from two communities: Statisticians, who are interested in neuroimaging and look for an introduction to the acquired data and typical scientific problems in the field and neuroimaging students, who want to learn about the statistical modeling and analysis of MRI data. Being a practical introduction, the book focuses on those problems in data analysis for which implementations within R are available. By providing full worked-out examples the book thus serves as a tutorial for MRI analysis with R, from which the reader can derive its own data processing scripts.

The book starts with a short introduction into MRI. The next chapter considers the process of reading and writing common neuroimaging data formats to and from the R session. The main chapters then cover four common MR imaging modalities and their data modeling and analysis problems: functional MRI, diffusion MRI, Multi-Parameter Mapping and Inversion Recovery MRI. The book concludes with extended Appendices on details of the utilize non-parametric statistics and on resources for R and MRI data.

The book also addresses the issues of reproducibility and topics like data organization and description, open data and open science. It completely relies on a dynamic report generation with knitr: The books R-code and intermediate results are available for reproducibility of the examples.


Jörg Polzehl has retired in 2022 after 25 years as research associate at the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) in Berlin, Germany. He holds a PhD in mathematics from Humboldt University Berlin. His main research interests are in computational and nonparametric statistics, with a focus on statistical modeling and data analysis in medical imaging. He has been elected as a Fellow of the Institute of Mathematical Statistics (IMS) and has been a longtime member of the American Statistical Association (ASA) and the Organization of Human Brain Mapping (OHBM).

Karsten Tabelow is a (particle) physisist by training who currently works as a data scientist at the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) in Berlin, Germany. He is interested in Magnetic Resonance Imaging data of the human brain and considers data modeling and analysis problems with a focus on structural adaptive smoothing methods and biophysical models. He is also interested in reconstruction problems from physics-based imaging modalities. He is a member of the OHBM.  Finally, he contributes to the discussion on Open Science and Research Data Handling especially within mathematics. Within the Mathematical Research Data Initiative (MaRDI) with the German National Research Data Infrastructure (NFDI) he is one of the strategic developers of the consortium and a leader of the MaRDI working group at WIAS.

Both authors have jointly coauthored several R packages for the analysis of Magnetic Resonance Imaging data.

Erscheint lt. Verlag 11.10.2023
Reihe/Serie Use R!
Use R!
Zusatzinfo XXI, 258 p. 78 illus., 47 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Technik Elektrotechnik / Energietechnik
Schlagworte Brain Connectivity • Diffusion MRI • functional MRI • Inversion Recovery MRI • Magnetic Resonance Imaging • MR Imaging Data Formats • Multi-Parameter Mapping • R Based Processing Pipelines • reproducible research • statistical modeling • structural adaptive smoothing • structural MRI
ISBN-10 3-031-38949-2 / 3031389492
ISBN-13 978-3-031-38949-8 / 9783031389498
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 42,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
69,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
69,99