Target Tracking with Random Finite Sets (eBook)
XVI, 443 Seiten
Springer Nature Singapore (Verlag)
978-981-19-9815-7 (ISBN)
This book focuses on target tracking and information fusion with random finite sets. Both principles and implementations have been addressed, with more weight placed on engineering implementations. This is achieved by providing in-depth study on a number of major topics such as the probability hypothesis density (PHD), cardinalized PHD, multi-Bernoulli (MB), labeled MB (LMB), d-generalized LMB (d-GLMB), marginalized d-GLMB, together with their Gaussian mixture and sequential Monte Carlo implementations. Five extended applications are covered, which are maneuvering target tracking, target tracking for Doppler radars, track-before-detect for dim targets, target tracking with non-standard measurements, and target tracking with multiple distributed sensors. The comprehensive and systematic summarization in target tracking with RFSs is one of the major features of the book, which is particularly suited for readers who are interested to learn solutions in target tracking with RFSs. The book benefits researchers, engineers, and graduate students in the fields of random finite sets, target tracking, sensor fusion/data fusion/information fusion, etc.
Weihua Wu is an associate professor at Air Force Early Warning Academy. His research direction is target tracking based on random finite sets. He is a candidate of young talent support project of Chinese association for science and technology. He presided over the completion of a number of scientific research projects such as the National Natural Science Foundation. He was funded and has published three books in National Defense Industry Press: 'Target Tracking With Random Finite Sets', 'Target Tracking Technology for Moving Sensors', and 'Multi-Sensor Data Fusion'. He has published about 30 papers (including well-known journals such as IEEE Transactions on Signal Processing, Signal Processing, Aerospace Science & Technology, Digital Signal Processing, etc.).
Hemin Sun is a professor from Air Force Early Warning Academy. His research direction is radar networking and data fusion. He was funded and has published two books in National Defense Industry Press: 'Multi-Sensor Data Fusion' and 'Target Tracking With Random Finite Sets'. He has published about 30 papers.
Mao Zheng is a lecturer from Air Force Early Warning Academy. His research direction is target tracking and data fusion. He has co-published a book about 'Multi-Sensor Data Fusion'. He has published about 20 papers.
Weiping Huang is a lecturer from Air Force Early Warning Academy. Her research direction is target tracking and data association. She received her doctor's degree with Target Tracking. She completed some scientific research projects such as the National Coastal Defense Monitoring System and has published a book about distribution system. She has published about 30 papers.
This book focuses on target tracking and information fusion with random finite sets. Both principles and implementations have been addressed, with more weight placed on engineering implementations. This is achieved by providing in-depth study on a number of major topics such as the probability hypothesis density (PHD), cardinalized PHD, multi-Bernoulli (MB), labeled MB (LMB), d-generalized LMB (d-GLMB), marginalized d-GLMB, together with their Gaussian mixture and sequential Monte Carlo implementations. Five extended applications are covered, which are maneuvering target tracking, target tracking for Doppler radars, track-before-detect for dim targets, target tracking with non-standard measurements, and target tracking with multiple distributed sensors. The comprehensive and systematic summarization in target tracking with RFSs is one of the major features of the book, which is particularly suited for readers who are interested to learn solutions in target tracking with RFSs. The book benefits researchers, engineers, and graduate students in the fields of random finite sets, target tracking, sensor fusion/data fusion/information fusion, etc.
Erscheint lt. Verlag | 3.9.2023 |
---|---|
Zusatzinfo | XVI, 443 p. 47 illus., 34 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Cardinalized probability hypothesis density. • data fusion • Generalized labeled multi-Bernoulli • Information Fusion • Labeled multi-Bernoulli • Multi-Bernoulli • Probability hypothesis density • Random Finite Set • random set • Sensor Fusion • target tracking |
ISBN-10 | 981-19-9815-9 / 9811998159 |
ISBN-13 | 978-981-19-9815-7 / 9789811998157 |
Haben Sie eine Frage zum Produkt? |
Größe: 10,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich