Wind Energy Engineering
Academic Press Inc (Verlag)
978-0-323-99353-1 (ISBN)
Written by some of the most forward-thinking professionals in the field, and giving a complete examination of one of the most promising and efficient sources of renewable energy, this book is an invaluable reference into this cross-disciplinary field for engineers.
Professor Trevor Letcher is an Emeritus Professor at the University of KwaZulu-Natal, South Africa, and living in the United Kingdom. He was previously Professor of Chemistry, and Head of Department, at the University of the Witwatersrand, Rhodes University, and Natal, in South Africa (1969-2004). He has published over 300 papers on areas such as chemical thermodynamic and waste from landfill in peer reviewed journals, and 100 papers in popular science and education journals. Prof. Letcher has edited and/or written 32 major books, of which 22 were published by Elsevier, on topics ranging from future energy, climate change, storing energy, waste, tyre waste and recycling, wind energy, solar energy, managing global warming, plastic waste, renewable energy, and environmental disasters. He has been awarded gold medals by the South African Institute of Chemistry and the South African Association for the Advancement of Science, and the Journal of Chemical Thermodynamics honoured him with a Festschrift in 2018. He is a life member of both the Royal Society of Chemistry (London) and the South African Institute of Chemistry. He is on the editorial board of the Journal of Chemical Thermodynamics, and is a Director of the Board of the International Association of Chemical Thermodynamics since 2002.
1. Why Wind Energy?
2. History of Harnessing Wind Power
3. Wind Power Fundamentals
4. Estimation of Wind Energy Potential and Prediction of Wind Power
5. Global Potential for Wind Generated Electricity
6. Achieving Carbon Neutrality: The Future of Wind Energy Development in China
7. Vertical wind speed profiles in atmospheric boundary layer flows
8. Wind Turbine Technologies
9. Small scale wind turbines
10. Civil Engineering aspects of a wind farm and wind turbine structures
11. Aerodynamics and the design of horizontal axis wind turbines
12. Civil Engineering challenges associated with design of Offshore Wind Turbines with special reference to China
13. Numerical methods for SSI analysis of Offshore Wind Turbine Foundations
14. Reliability of Wind Turbines
15. Practical method to estimate foundation stiffness for design of offshore wind turbines
16. Physical Modelling of Offshore Wind Turbine Model for Prediction of Prototype Response
17. Seismic Design and Analysis of Offshore Wind Turbines
18. Seismic Hazards associated with Offshore Wind Farms
19. Some Challenges and Opportunities around Lifetime Performance and Durability of wind turbines
20. A Review of Wind Power in Grid Codes: current state and future challenges
21. Intelligent design and optimization of Wind Turbines
22. Wind and Hybrid Power Systems: Reliability Based Assessment
23. Multi-fidelity simulation tools for modern wind turbines
24. Environmental and structural safety issues related to wind energy
25. Innovative Foundation Design for OWTS
26. Gravity Based Foundation (GBF) for offshore wind turbines
27. Greenhouse Gas Emissions from Storing Energy from Wind Turbines
28. Climate Change Effects on Offshore Wind Turbines
29. Life cycle assessment: meta-analysis of cumulative energy demand and greenhouse gas emissions for wind energy technologies
30. Wind turbines and landscape
31. Acoustics and Noise Emissions including Porus Material for Trailing Edge Noise Abatement for Wind Turbines
32. Global Rare Earth Supply, Life Cycle and Wind Energy
33. Short-term power prediction and downtime classification
34. Levelized Cost Of Energy (UK Offshore Wind Power) Drivers, Challenges, Opportunities and Practice 2010 to 2020
35. Certification of new foundations for offshore wind turbines
Erscheinungsdatum | 10.07.2023 |
---|---|
Zusatzinfo | 130 illustrations (80 in full color); Illustrations |
Verlagsort | Oxford |
Sprache | englisch |
Maße | 216 x 276 mm |
Gewicht | 1840 g |
Themenwelt | Technik ► Elektrotechnik / Energietechnik |
ISBN-10 | 0-323-99353-2 / 0323993532 |
ISBN-13 | 978-0-323-99353-1 / 9780323993531 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich