Resource-Efficient Vehicle-to-Cloud Communications Leveraging Machine Learning

(Autor)

Buch | Softcover
285 Seiten
2021
Shaker (Verlag)
978-3-8440-8356-9 (ISBN)

Lese- und Medienproben

Resource-Efficient Vehicle-to-Cloud Communications Leveraging Machine Learning - Benjamin Sliwa
49,80 inkl. MwSt
Vehicular big data is anticipated to become the "new oil" of the automotive industry. Although the novel vehicle-as-a-sensor paradigm will fuel the emergence of innovative crowdsensing-enabled services, the tremendously increased amount of transmitted data represents a massive challenge for the cellular network infrastructure. More dramatically, the complex vehicular radio propagation environments frequently require to reduce the transmission efficiency in favor of more reliable data transfer, ultimately resulting in a wastage of the limited network resources. This thesis focuses on the development and analysis of novel solution approaches that utilize end-edge intelligence mechanisms at the client devices for vehicle-to-cloud data transfer targeted at delay-tolerant applications. For this purpose, supervised, unsupervised, and reinforcement learning methods are brought together to autonomously detect and exploit favorable transmission opportunities. The results of this thesis show that machine learning-based data rate prediction models are well able to account for the complex interplay of the different logical context domains. As a result, they provide the fundamental information for autonomously learning resource-efficient data transfer policies. As pointed out by a comprehensive real world performance evaluation, the apparently selfish goal of data rate maximization contributes to the good of all and allows to improve the intra-cell coexistence through significantly reducing the number of required network resources per data packet.
Erscheinungsdatum
Reihe/Serie Dortmunder Beiträge zu Kommunikationsnetzen und -systemen ; 21
Verlagsort Düren
Sprache englisch
Maße 148 x 210 mm
Gewicht 428 g
Themenwelt Schulbuch / Wörterbuch
Mathematik / Informatik Informatik Netzwerke
Technik Nachrichtentechnik
Schlagworte machine learning • V2X • Vehicle-to-Cloud
ISBN-10 3-8440-8356-1 / 3844083561
ISBN-13 978-3-8440-8356-9 / 9783844083569
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
das umfassende Handbuch für den Einstieg in die Netzwerktechnik

von Martin Linten; Axel Schemberg; Kai Surendorf

Buch | Hardcover (2023)
Rheinwerk (Verlag)
29,90
das Praxisbuch für Admins und DevOps-Teams

von Michael Kofler

Buch | Hardcover (2023)
Rheinwerk (Verlag)
39,90