Supervised Machine Learning for Text Analysis in R - Emil Hvitfeldt, Julia Silge

Supervised Machine Learning for Text Analysis in R

Buch | Softcover
402 Seiten
2021
Chapman & Hall/CRC (Verlag)
978-0-367-55419-4 (ISBN)
62,30 inkl. MwSt
This book is designed to provide practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate text into their modeling pipelines. We assume that the reader is somewhat familiar with R, predictive modeling concepts for non-text data, and the tidyverse family of packages.
Text data is important for many domains, from healthcare to marketing to the digital humanities, but specialized approaches are necessary to create features for machine learning from language. Supervised Machine Learning for Text Analysis in R explains how to preprocess text data for modeling, train models, and evaluate model performance using tools from the tidyverse and tidymodels ecosystem. Models like these can be used to make predictions for new observations, to understand what natural language features or characteristics contribute to differences in the output, and more. If you are already familiar with the basics of predictive modeling, use the comprehensive, detailed examples in this book to extend your skills to the domain of natural language processing.

This book provides practical guidance and directly applicable knowledge for data scientists and analysts who want to integrate unstructured text data into their modeling pipelines. Learn how to use text data for both regression and classification tasks, and how to apply more straightforward algorithms like regularized regression or support vector machines as well as deep learning approaches. Natural language must be dramatically transformed to be ready for computation, so we explore typical text preprocessing and feature engineering steps like tokenization and word embeddings from the ground up. These steps influence model results in ways we can measure, both in terms of model metrics and other tangible consequences such as how fair or appropriate model results are.

Emil Hvitfeldt is a clinical data analyst working in healthcare, and an adjunct professor at American University where he is teaching statistical machine learning with tidymodels. He is also an open source R developer and author of the textrecipes package. Julia Silge is a data scientist and software engineer at RStudio PBC where she works on open source modeling tools. She is an author, an international keynote speaker and educator, and a real-world practitioner focusing on data analysis and machine learning practice.

1. Language and modeling. 2. Tokenization. 3. Stop words. 4. Stemming. 5. Word Embeddings. 6. Regression. 7. Classification. 8. Dense neural networks. 9. Long short-term memory (LSTM) networks. 10. Convolutional neural networks.

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Data Science Series
Zusatzinfo 1 Tables, black and white; 57 Line drawings, color; 8 Line drawings, black and white; 57 Illustrations, color; 8 Illustrations, black and white
Sprache englisch
Maße 156 x 234 mm
Gewicht 689 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
ISBN-10 0-367-55419-4 / 0367554194
ISBN-13 978-0-367-55419-4 / 9780367554194
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90