Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization - B.K. Tripathy, Anveshrithaa Sundareswaran, Shrusti Ghela

Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization

Buch | Softcover
160 Seiten
2023
CRC Press (Verlag)
978-1-032-04103-2 (ISBN)
73,55 inkl. MwSt
This book describes algorithms like Locally Linear Embedding, Laplacian eigenmaps, Semidefinite Embedding, t-SNE to resolve the problem of dimensionality reduction in case of non-linear relationships within the data. Underlying mathematical concepts, derivations, proofs, strengths and limitations of these algorithms are discussed as well.
Unsupervised Learning Approaches for Dimensionality Reduction and Data Visualization describes such algorithms as Locally Linear Embedding (LLE), Laplacian Eigenmaps, Isomap, Semidefinite Embedding, and t-SNE to resolve the problem of dimensionality reduction in the case of non-linear relationships within the data. Underlying mathematical concepts, derivations, and proofs with logical explanations for these algorithms are discussed, including strengths and limitations. The book highlights important use cases of these algorithms and provides examples along with visualizations. Comparative study of the algorithms is presented to give a clear idea on selecting the best suitable algorithm for a given dataset for efficient dimensionality reduction and data visualization.

FEATURES






Demonstrates how unsupervised learning approaches can be used for dimensionality reduction



Neatly explains algorithms with a focus on the fundamentals and underlying mathematical concepts



Describes the comparative study of the algorithms and discusses when and where each algorithm is best suitable for use



Provides use cases, illustrative examples, and visualizations of each algorithm



Helps visualize and create compact representations of high dimensional and intricate data for various real-world applications and data analysis

This book is aimed at professionals, graduate students, and researchers in Computer Science and Engineering, Data Science, Machine Learning, Computer Vision, Data Mining, Deep Learning, Sensor Data Filtering, Feature Extraction for Control Systems, and Medical Instruments Input Extraction.

B.K. Tripathy, Anveshrithaa Sundareswaran, Shrusti Ghela

Chapter 1 Introduction to Dimensionality Reduction

Chapter 2 Principal Component Analysis (PCA)

Chapter 3 Dual PCA

Chapter 4 Kernel PCA

Chapter 5 Canonical Correlation Analysis (CCA

Chapter 6 Multidimensional Scaling (MDS)

Chapter 7 Isomap

Chapter 8 Random Projections

Chapter 9 Locally Linear Embedding

Chapter 10 Spectral Clustering

Chapter 11 Laplacian Eigenmap

Chapter 12 Maximum Variance Unfolding

Chapter 13 t-Distributed Stochastic Neighbor Embedding (t-SNE

Chapter 14 Comparative Analysis of Dimensionality Reduction

Techniques

Erscheinungsdatum
Zusatzinfo 46 Line drawings, black and white; 46 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 322 g
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Theorie / Studium
Technik Umwelttechnik / Biotechnologie
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-032-04103-X / 103204103X
ISBN-13 978-1-032-04103-2 / 9781032041032
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90