Machine Learning for Knowledge Discovery with R
Methodologies for Modeling, Inference and Prediction
Seiten
2021
Chapman & Hall/CRC (Verlag)
978-1-032-06536-6 (ISBN)
Chapman & Hall/CRC (Verlag)
978-1-032-06536-6 (ISBN)
‘Machine Learning for Knowledge Discovery with R’ contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes most recent supervised and unsupervised machine learning methodologies
Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein.
Key Features:
Contains statistical theory for the most recent supervised and unsupervised machine learning methodologies.
Emphasizes broad statistical thinking, judgment, graphical methods, and collaboration with subject-matter-experts in analysis, interpretation, and presentations.
Written by statistical data analysis practitioner for practitioners.
The book is suitable for upper-level-undergraduate or graduate-level data analysis course. It also serves as a useful desk-reference for data analysts in scientific research or industrial applications.
Machine Learning for Knowledge Discovery with R contains methodologies and examples for statistical modelling, inference, and prediction of data analysis. It includes many recent supervised and unsupervised machine learning methodologies such as recursive partitioning modelling, regularized regression, support vector machine, neural network, clustering, and causal-effect inference. Additionally, it emphasizes statistical thinking of data analysis, use of statistical graphs for data structure exploration, and result presentations. The book includes many real-world data examples from life-science, finance, etc. to illustrate the applications of the methods described therein.
Key Features:
Contains statistical theory for the most recent supervised and unsupervised machine learning methodologies.
Emphasizes broad statistical thinking, judgment, graphical methods, and collaboration with subject-matter-experts in analysis, interpretation, and presentations.
Written by statistical data analysis practitioner for practitioners.
The book is suitable for upper-level-undergraduate or graduate-level data analysis course. It also serves as a useful desk-reference for data analysts in scientific research or industrial applications.
Kao-Tai Tsai obtained his Ph.D. in Mathematical Statistics from University of California, San Diego and had worked at AT&T Bell Laboratories to conduct statistical research, modelling, and exploratory data analysis. After that, he joined the US FDA and later pharmaceutical companies focusing on biostatistics, clinical trial research and data analysis to address the unmet needs in human health.
1. Statistical Data Analysis. 2. Examining Data Distribution. 3. Regression with Shrinkage. 4. Recursive Partitioning Modeling. 5. Support Vector Machines. 6. Cluster Analysis. 7. Neural Networks. 8. Causal Inference and Matching. 9. Business and Commercial Data Modeling. 10. Analysis of Response Profiles.
Erscheinungsdatum | 27.09.2021 |
---|---|
Zusatzinfo | 98 Line drawings, black and white; 98 Illustrations, black and white |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 1070 g |
Themenwelt | Mathematik / Informatik ► Mathematik |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Umwelttechnik / Biotechnologie | |
ISBN-10 | 1-032-06536-2 / 1032065362 |
ISBN-13 | 978-1-032-06536-6 / 9781032065366 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95 €
Analysis und Lineare Algebra mit Querverbindungen
Buch | Hardcover (2022)
Springer Spektrum (Verlag)
64,99 €
Grundlagen für das Bachelor-Studium
Buch | Hardcover (2023)
Hanser (Verlag)
39,99 €