Handbook of Nanocomposite Supercapacitor Materials I (eBook)
XXI, 364 Seiten
Springer International Publishing (Verlag)
978-3-030-43009-2 (ISBN)
This book delivers a comprehensive overview of the characteristics of several types of materials that are widely used in the current era of supercapacitors; namely, architectured carbon materials, transition metal oxides and conducting polymers. It provides readers with a complete introduction to the fundamentals of supercapacitors, including the development of new electrolytes and electrodes, while highlighting the advantages, challenges, applications and future of these materials.
This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.Preface 7
Contents 10
Editor and Contributors 18
1 Characteristics of Capacitor: Fundamental Aspects 21
1.1 Introduction 22
1.2 Parallel Plate Model 23
1.3 Dielectric Polarization Mechanism 25
1.4 Terminologies 27
1.4.1 Capacitance 27
1.4.2 Dielectric Parameters 30
1.4.3 Breakdown Voltage 32
1.4.4 Equivalent Circuit 34
1.4.5 Power Factor 36
1.4.6 Dissipation Factor 36
1.4.7 Q Factor 37
1.4.8 Leakage Current 37
1.4.9 Insulation Resistance 37
1.4.10 Ripple Current/Voltage 37
1.4.11 Capacitance Instability 38
1.4.12 Power Dissipation 38
1.4.13 Current–Voltage Relation 39
1.4.14 DC and AC Response 40
1.4.15 Self-discharge 42
1.4.16 Dielectric Absorption 42
1.5 Structure 43
1.5.1 Capacitors in Parallel 44
1.5.2 Capacitors in Series 44
1.6 Capacitor Types 45
1.6.1 Paper Capacitors 45
1.6.2 Plastic Film Capacitor 47
1.6.3 Ceramic Capacitors 50
1.6.4 Glass Capacitor 52
1.6.5 Mica Capacitors 53
1.6.6 Electrolytic Capacitors 55
1.6.7 Polymer Capacitors 59
1.7 Color Code 59
1.7.1 Four-Color Band Capacitor 59
1.7.2 Five-Color Band Capacitor 60
1.8 High-Performance Capacitors 60
1.9 Concluding Remarks 68
References 69
2 Capacitor to Supercapacitor 72
2.1 Introduction 73
2.2 History 74
2.3 Faradaic and Non-Faradaic Processes 75
2.4 Types of Supercapacitors 76
2.4.1 Electric Double-Layer Capacitor 77
2.4.2 Pseudocapacitor 80
2.4.3 Hybrid Capacitor 82
2.5 Structure 83
2.5.1 Electrode 84
2.5.2 Electrolyte 87
2.5.3 Electrolyte Membrane 89
2.5.4 Current Collector 89
2.6 Key Parameters for Estimation of Performance 90
2.6.1 Specific Capacitance 90
2.6.2 Energy Density 91
2.6.3 Power Density 91
2.7 Electrochemical Characterizations 92
2.7.1 Electrochemical Impedance Spectroscopy 93
2.7.2 Cyclic Voltammetry 95
2.7.3 Galvanostatic Charge/Discharge 96
2.8 Concluding Remarks 104
References 106
3 Characteristics of Transition Metal Oxides 109
3.1 Introduction 110
3.2 Importance of Transition Metal Oxides 111
3.3 Transition Metal Oxide Nanostructures 111
3.3.1 Synthesis of Transition Metal Oxide Nanostructures 111
3.4 Characteristics of Transition Metal Oxides 121
3.4.1 Size 122
3.4.2 Shape 122
3.4.3 Surface Area 122
3.4.4 Adhesion 124
3.4.5 Color 125
3.5 Optical Properties of Transition Metal Oxides 126
3.6 Surface Properties of Transition Metal Oxides 127
3.7 Electronic Properties of Transition Metal Oxides 128
3.7.1 Electronic Configuration of Transition Metals 128
3.7.2 Energy Band and Orbital Interactions 129
3.7.3 Electronic Conductivity 130
3.8 Magnetic Properties of Transition Metal Oxides 130
3.9 Chemical Properties of Transition Metal Oxides 132
3.9.1 Chemical Stability 132
3.9.2 Catalytic Properties 132
3.10 Electrochemical Properties of Transition Metal Oxides 132
3.11 Thermoelectric Properties of Transition Metal Oxides 133
3.12 Environmental Impact of Transition Metal Oxides 133
3.13 Post-transition Metal Oxides 133
3.14 Cost of Transition Metal Oxides 134
3.15 Applications of Transition Metal Oxides 134
3.15.1 Nanoelectronics 134
3.15.2 Photonic and Optoelectronic Devices 134
3.15.3 Gas Sensors 135
3.15.4 Catalysis 136
3.15.5 Biomedicine 136
3.15.6 Electrodes in Supercapacitors and Lithium-Ion Batteries 136
3.16 Concluding Remarks 137
References 137
4 Characteristics of Activated Carbon 142
4.1 Introduction 142
4.2 Preparation of Activated Carbon 144
4.2.1 Factors Deciding the Properties of Activated Carbon 145
4.2.2 Carbonization and Activation 147
4.2.3 Hydrothermal Carbonization and Activation 154
4.2.4 Surface Modification and Heteroatom Doping 156
4.3 Characterizations of Activated Carbon 156
4.3.1 Physiochemical Study (BET Surface Area and Pore Size Distribution) 156
4.3.2 Study of Functional Groups of Heteroatom 160
4.4 Applications 165
4.4.1 Energy Storage 166
4.4.2 Photocatalyst 167
4.4.3 Gas Adsorbent 167
4.4.4 Microwave Absorber 167
4.4.5 Wastewater Treatment 167
4.5 Understanding the Associated Challenges of Biomass-Derived Activated Carbon 167
4.6 Concluding Remarks 168
References 169
5 Characteristics of Graphene/Reduced Graphene Oxide 172
5.1 Introduction 173
5.2 Structure of Graphene 173
5.3 Synthesis of Graphene/Reduced Graphene Oxide 175
5.3.1 Exfoliation Approach 175
5.3.2 Chemical Vapour Deposition 177
5.3.3 Graphene/Reduced Graphene Oxide from Graphene Oxide 179
5.4 Properties of Graphene 182
5.4.1 Electronic Properties 182
5.4.2 Optical Properties 184
5.4.3 Thermal Properties 185
5.4.4 Mechanical Properties 186
5.5 Doping of Hetero-atoms into Graphene Lattice 188
5.6 Applications 189
5.7 Concluding Remarks 190
References 190
6 Characteristics of Carbon Nanotubes 195
6.1 Introduction 195
6.2 Structure of Carbon Nanotubes 197
6.2.1 Based on Tube Structure 197
6.2.2 Based on Shapes 201
6.3 Synthesis of Carbon Nanotubes 204
6.3.1 Physical Methods 204
6.3.2 Chemical Methods 207
6.3.3 Others 210
6.4 Growth Mechanism of Carbon Nanotubes 211
6.4.1 Vapour-Solid-Solid (VSS) Mechanism 212
6.4.2 Vapour-Liquid-Solid (VLS) Mechanism 213
6.5 Purification of Carbon Nanotubes 214
6.6 Properties of Carbon Nanotubes 217
6.6.1 Electrical 217
6.6.2 Mechanical 219
6.6.3 Thermal 220
6.7 Characteristics of Carbon Nanotubes 222
6.8 Application of Carbon Nanotubes 222
6.9 Challenges and Future Scope 224
6.9.1 Dispersion of Carbon Nanotubes 224
6.9.2 Toxicity of Carbon Nanotubes 225
6.10 Concluding Remarks 225
References 226
7 Characteristics of Carbon Nanofibers 231
7.1 Introduction 231
7.1.1 Structure 232
7.2 Synthesis 235
7.2.1 Chemical Vapor Deposition (CVD) 236
7.2.2 Pyrolysis of Polymer Nanofibers 238
7.3 Structural Characterizations 240
7.3.1 Microscopy 240
7.3.2 X-Ray Diffraction 241
7.3.3 Raman Spectroscopy 243
7.3.4 Electrochemical 244
7.4 Properties 245
7.4.1 Specific Surface Area (SSA) 245
7.4.2 Mechanical 245
7.4.3 Electronic 247
7.4.4 Thermal 247
7.5 Applications 248
7.5.1 Composites 248
7.5.2 Aerogels 248
7.5.3 Pollutant Adsorbents 249
7.5.4 Gas Sensors 250
7.5.5 Power Generation and Storage 250
7.5.6 Field Emitters 255
7.6 Concluding Remarks 256
References 257
8 Characteristics of Conducting Polymers 262
8.1 Introduction 263
8.2 Structure of Conducting Polymers 263
8.3 Mechanism of Conduction in Conducting Polymer 264
8.4 Characteristics of Common Conducting Polymers 268
8.4.1 Polyacetylene 268
8.4.2 Polyaniline 269
8.4.3 Polypyrrole 269
8.4.4 Polythiophene 271
8.4.5 Others 272
8.5 General Method of Synthesis of Conducting Polymers 272
8.5.1 Electrochemical Polymerization 272
8.5.2 Chemical Polymerization 273
8.6 Properties of Conducting Polymers 273
8.6.1 Electrical Conductivity 273
8.6.2 Absorption Characteristics 276
8.6.3 Electrochemical Characteristics 277
8.6.4 Solubility Characteristics 277
8.6.5 Swelling and De-Swelling 278
8.6.6 Electrochromism 279
8.7 Applications 279
8.8 Concluding Remarks 280
References 280
9 Characteristics of Electrode Materials for Supercapacitors 284
9.1 Introduction 285
9.2 Historical Background of Supercapacitors 286
9.3 Types of Supercapacitors 286
9.3.1 Electric Double-Layer Capacitors 287
9.3.2 Pseudocapacitors 288
9.3.3 Hybrid Capacitors 289
9.4 Characteristics of Electrode Materials Used in Supercapacitors 290
9.4.1 Electrodes for Supercapacitors 291
9.4.2 Characteristics of Electrode Materials 296
9.5 Concluding Remarks 297
References 299
10 Characteristics of Electrolytes 301
10.1 Introduction 301
10.2 Aqueous Electrolytes 303
10.2.1 Acid Electrolytes 305
10.2.2 Alkaline Electrolytes 307
10.2.3 Neutral Electrolytes 309
10.3 Organic Electrolytes 310
10.3.1 Organic Electrolytes for Electrical Double-Layer Capacitors 311
10.3.2 Organic Electrolytes for Asymmetric and Hybrid Capacitors 312
10.3.3 Organic Solvents for Electrochemical Supercapacitors 313
10.3.4 Conducting Salts in Organic Electrolytes for Electrochemical Supercapacitors 314
10.4 Ionic Liquid Electrolytes 314
10.4.1 Solvent-Free Ionic Liquid Electrolytes for Electrical Double-Layer Capacitors 316
10.4.2 Solvent-Free Ionic Liquids for Asymmetric and Hybrid Capacitors 317
10.4.3 Mixture of Organic Solvent and Ionic Liquid 317
10.5 Solid State or Quasisolid State Electrolytes 318
10.5.1 Polymer Electrolytes 318
10.6 Redox-Active Electrolytes 322
10.6.1 Aqueous Redox-Active Electrolytes 322
10.7 Features of Electrolyte Materials 324
10.8 Concluding Remarks 325
References 325
11 Characteristics of Separator Materials for Supercapacitors 329
11.1 Introduction 330
11.2 Commercially Available Separators 331
11.3 Parameters of Interest for the Separator Used in Supercapacitors 331
11.4 Physical and Electrochemical Characteristics of Separators 332
11.4.1 Porosity 332
11.4.2 Degree of Electrolyte Uptake 333
11.4.3 Thermal Shrinkage 333
11.4.4 Pore Size 333
11.4.5 Permeability 334
11.4.6 Mechanical Strength 334
11.4.7 Tortuosity 334
11.4.8 Ionic Conductivity 335
11.5 Separators for Supercapacitors 335
11.5.1 Characteristics of Separators 335
11.6 Concluding Remarks 335
References 339
12 Characteristics of Current Collector Materials for Supercapacitors 341
12.1 Introduction 341
12.2 Metal Foil and Metal Foam-Based Current Collector 343
12.3 Dimensionally Stabilized Anode Current Collector 344
12.4 Current Collector for Flexible Supercapacitors 345
12.5 Current Collector Materials 345
12.5.1 Nickel 346
12.5.2 Aluminum 347
12.5.3 Stainless Steel 347
12.5.4 Copper 349
12.6 Current Collector Material Characteristics for Supercapacitors 350
12.6.1 Characteristics of Current Collector Materials 350
12.7 Concluding Remarks 351
References 353
13 Applications of Supercapacitors 355
13.1 Introduction 355
13.2 Applications of Supercapacitors 356
13.2.1 Portable and Flexible Electronics 356
13.2.2 Hybrid Electric Vehicles 358
13.2.3 Power Supply 358
13.2.4 Wind/Solar Powering 360
13.2.5 Implantable Healthcare 360
13.2.6 Defense and Aerospace 361
13.2.7 Other Electric Utilities 361
13.3 Concluding Remarks 363
References 364
Index 365
Erscheint lt. Verlag | 16.4.2020 |
---|---|
Reihe/Serie | Springer Series in Materials Science | Springer Series in Materials Science |
Zusatzinfo | XXI, 364 p. 182 illus., 119 illus. in color. |
Sprache | englisch |
Themenwelt | Technik ► Maschinenbau |
Wirtschaft | |
Schlagworte | composite electrodes • Conducting Polymer-Based Electrode • conducting polymers • Energy storage and conversion • Flexible supercapacitor • Nanostructured Carbon-Based Electrode • Reduced graphene oxide • Transition Metal Oxide-Based Electrode |
ISBN-10 | 3-030-43009-X / 303043009X |
ISBN-13 | 978-3-030-43009-2 / 9783030430092 |
Haben Sie eine Frage zum Produkt? |
Größe: 19,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich