Nanobiomaterial Engineering -

Nanobiomaterial Engineering (eBook)

Concepts and Their Applications in Biomedicine and Diagnostics
eBook Download: PDF
2020 | 1st ed. 2020
XII, 294 Seiten
Springer Singapore (Verlag)
978-981-329-840-8 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book comprehensively documents the application of Nanobiomaterials in the field of bio-medicine and diagnostics technologies by involving classical concepts/examples. Nanobiotechnology is an emerging area which encompasses all the facets of research of nano and biomaterials with their interaction with biological systems. The book briefly summarizes the various types of Nanomaterial's, and highlights the recent developments in the synthesis of the nanomaterials for the diagnostic and therapeutic biomedical applications. It skilfully reviews the utilization of the nanomaterials alone or in combination with other bio-molecules as a contrast enhancer in in-vivo imaging, Nano-Theranostics, drug delivery, and sensing transducer matrix. It also discusses the current research on designing of the new Nanobiomaterials and their implementation in numerous fields including bio-medicine and diagnostics. Finally, it summarizes the future prospects and the commercial viability of Nanobiomaterials in the human health care.?




Prof. Pranjal Chandra is currently employed as Assistant Professor at the School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India. He earned his Ph.D. from Pusan National University, South Korea and did  post-doctoral training at Technion-Israel Institute of Technology, Israel. His research focus is highly interdisciplinary, spanning a wide range in biotechnology, nanobiosensors, material engineering, nanomedicine etc. He has designed several commercially viable biosensing prototypes that can be operated for onsite analysis for biomedical diagnostics. He has published 4 books on various aspects of biosensors / medical diagnostics from IET London, Springer Nature, CRC press USA. He has also published over 85 journal articles in topmost journals of his research area. His work has been greatly highlighted in over 300 topmost news agencies globally including Rajya Sabha TV, DD Science, Science Trends USA, Nature India, Vigyan Prasar, Global Medical Discovery; Canada, APBN Singapore, Business Wire; Dublin etc. He is recipient of many prestigious  awards and fellowships such as; DST Ramanujan fellowship (Government of India);  ECRA (DST, Government of India); BK -21 and NRF fellowship, South Korea; Technion post-doctoral fellowship, Israel; NMS Young scientist award, BRSI Young Scientist Award, Young Engineers Award 2018, RSC Highly Cited Correspondong Author Award (general chemistry); ACS / Elsevier Outstanding Reviewer Awards etc. He is reviewer of over 40 international journals and expert project reviewer of various national / international funding agencies. He is Associate Editor of Sensors International and an editorial board member of a Materials Science for Energy Technologies  by KeAi and Elsevier, World journal of methodology, USA;  Frontiers of Biosciences, USA; Reports in Physical Sciences, Singapore. 

Prof.Rajiv Prakash received his M. Tech. degree in Materials Technology from Institute of Technology, Banaras Hindu University IIT (BHU), Varanasi, India and did his Ph.D. work from Tata Institute of Fundamental Research, Mumbai, India. Presently, he is Professor in the School of Materials Science and Technology, Dean (Research and Development) of the institute, and Professor-in-charge of the Central Instrument Facility. He was also a visiting scientist/professor at the University of Applied Sciences, Germany and Kyushu Institute of Technology, Japan (under DST-JSPS). Before joining IIT (BHU), Varanasi he has served as Scientist in the CSIR laboratory Lucknow, India for more than 7 years. He has been recipients of many awards including Young Scientist Award (Council of Science and Technology), Young Engineer Awards (Indian National academy of Engineering) of India and Materials Society Medal Award of India. He is elected as Academician of Asia Pacific Academy of Materials in 2013. His current research interests include morphology controlled synthesis of electronic polymers, nanocomposites, fabrication and characterization of organic electronic devices, sensors/biosensors, and Nanobioengineering. Till now, he has more than 160 publications in international journals of repute and 20 patents to his credit (out of which two technologies transferred for commercialization). He is on the Editorial Board of several National and International Journals. His interdisciplinary research work has been highly cited and featured on various platforms including nature news. He is the member of various national committees including India Vision Plan 2035 of DST-TIFAC, and 'IMPRINT' program of MHRD, Government of India.


This book comprehensively documents the application of Nanobiomaterials in the field of bio-medicine and diagnostics technologies by involving classical concepts/examples. Nanobiotechnology is an emerging area which encompasses all the facets of research of nano and biomaterials with their interaction with biological systems. The book briefly summarizes the various types of Nanomaterial's, and highlights the recent developments in the synthesis of the nanomaterials for the diagnostic and therapeutic biomedical applications. It skilfully reviews the utilization of the nanomaterials alone or in combination with other bio-molecules as a contrast enhancer in in-vivo imaging, Nano-Theranostics, drug delivery, and sensing transducer matrix. It also discusses the current research on designing of the new Nanobiomaterials and their implementation in numerous fields including bio-medicine and diagnostics. Finally, it summarizes the future prospects and thecommercial viability of Nanobiomaterials in the human health care.?

Contents 5
Editors and Contributors 7
About the Editors 7
Contributors 9
1: Nanobiosensor-Based Diagnostic System: Transducers and Surface Materials 13
1.1 Introduction 14
1.2 Different Transducers for Biosensing with Advanced Surface Materials 15
1.3 Low Electrocatalytically Active Indium Tin Oxide (ITO) Transducer for Highly Sensitive Biomarker Detection 19
1.4 A Commercial Step for the Nanobiosensor 21
1.5 Conclusions 22
References 22
2: Biosensors Based on Nanomaterials: Transducers and Modified Surfaces for Diagnostics 26
2.1 Introduction 27
2.2 General Properties of Bio-recognition Molecules 28
2.2.1 Enzymes 29
2.2.2 Antibodies 32
2.2.3 Nucleic Acids 34
2.2.4 Aptamers 35
2.3 Role of Nanomaterials in Nanobiosensors 37
2.3.1 Introduction 37
2.3.2 Quantum Confinement 37
2.3.3 Local Surface Plasmon Resonance (LSPR) 38
2.3.4 Effect of Plasmons on surface-enhanced Raman scattering (SERS) 39
2.3.5 Effect of Quantum Confinement on Fluorescence 40
2.3.6 Superparamagnetism 42
2.3.7 Effects Given by Increase in the Surface 43
2.4 Classification of Nanobiosensors Based on Their Principle of Transduction 44
2.4.1 Electrochemical Nanobiosensors 44
2.4.1.1 Voltammetric 45
2.4.1.2 Electrochemical Impedance Spectroscopy (EIS) 45
2.4.2 Piezoelectric 47
2.4.3 Colorimetric 47
2.4.4 Fluorescent 48
2.4.5 Chemiluminescent 49
2.4.6 Nanobiosensors Based on LSPR 50
2.4.7 Nanobiosensors Based on SERS 51
2.5 Specific Applications of Nanobiosensors in Diagnostics 52
2.6 Conclusions and Future Perspectives 54
References 55
3: Carbon Quantum Dots: A Potential Candidate for Diagnostic and Therapeutic Application 59
3.1 Introduction 60
3.2 Synthesis 61
3.3 Applications 65
3.3.1 Bio-imaging 65
3.3.2 Bio-sensing 68
3.3.3 Electrochemical Sensors 69
3.3.4 Nano-medicine and Targeted Drug Delivery 70
3.3.5 Tissue Engineering 72
3.3.6 Anticancer Study 73
3.4 Conclusion 74
References 75
4: Carbon Nanomaterials for Electrochemiluminescence-Based Immunosensors: Recent Advances and Applications 81
4.1 Introduction 82
4.2 Biosensor 82
4.2.1 Basic Fundamental of ECL Immunosensors 83
4.2.1.1 Antibodies as the Bioreceptor 84
4.2.1.2 Electrochemiluminescence-Based Transducer 85
4.3 Nanomaterials 87
4.3.1 Advances and Applications of Carbon Nanomaterials in ECL Immunosensors 88
4.3.1.1 Carbon Nanotubes 88
4.3.1.2 Graphene-Based Nanomaterials 92
4.3.1.3 Quantum Dots 93
4.4 Conclusion and Future Prospects 94
References 95
5: Green Synthesis of Colloidal Metallic Nanoparticles Using Polyelectrolytes for Biomedical Applications 101
5.1 Introduction 102
5.1.1 Polyelectrolytes 102
5.1.2 Classification of Polyelectrolytes 103
5.2 Methods for Synthesis of Nanoparticles 105
5.2.1 Colloidal Synthesis of Nanoparticles 106
5.2.2 Green Synthesis of Metallic Nanoparticles Using Polyelectrolytes 109
5.2.3 Synthesis of Nanoparticles Using Natural and Bio-Based Polyelectrolytes 110
5.3 Biomedical Applications of Colloidal Nanoparticles Stabilized Using Polyelectrolytes 112
References 115
6: Peroxidase-Like Activity of Metal Nanoparticles for Biomedical Applications 119
6.1 Introduction 120
6.2 Metal Nanoparticles as Catalysts 122
6.3 Peroxidase-Like Activity of Metal Nanoparticles 122
6.4 Biomedical Applications of Peroxidase-Like Metal Nanoparticles 123
6.4.1 Biosensing 123
6.4.1.1 Detection of Heparin in Blood 123
6.4.1.2 Detection of Glucose 124
Blood-Glucose Monitoring Sensor 124
6.4.1.3 Detection of Cholesterol and Galactose Using Peroxidase-Like MNPs 125
6.4.1.4 Plasmonic and Catalytic Activity of Gold Nanoparticles for Sensing Glucose and Lactate in Living Tissues 126
6.4.1.5 Using Bare Nanoparticles for Detection of Food Contaminants 127
6.4.1.6 Detection of Nucleic Acids 127
6.4.1.7 Detection of Thrombin 127
6.4.2 Detection of Tumor Cells 128
6.4.2.1 Hybrid AuNCs for Rapid Colorimetric Detection of Cancer Cells 128
6.4.2.2 Stem Cell Proliferation and Imaging 128
6.4.3 Immunoassays 129
6.4.3.1 Immunoassay for Detection Cardiac Troponin I 129
6.4.3.2 Immunoassay for Detection of Cancer 130
6.4.3.3 Chitosan-Modified MNPs for Detection of Mouse IgG and CEA 130
6.4.4 Detection of IgG Using Prussian Blue-Modified Iron Oxide Nanoparticles 131
6.5 Limitations 132
6.6 Summary and Outlook 132
References 134
7: Biomedical Applications of Lipid Membrane-Based Biosensing Devices 137
7.1 Introduction 137
7.2 The Preparation of Lipid Membranes 138
7.3 Methods for the Preparation of Two Most Important Platforms of Stabilized Devices Based on Lipid Films 139
7.3.1 Stabilized Lipid Films Formed on a Glass Fiber Filter 139
7.3.2 Polymer-Supported Bilayer Lipid Membranes 140
7.3.3 Polymeric Lipid Membranes Supported on Graphene Microelectrodes 141
7.3.4 Polymerized Lipid Membranes on ZnO Electrodes 141
7.3.4.1 Potentiometric Biosensors Based on ZnO Nanowalls and Stabilized Polymerized Lipid Film 141
7.3.4.2 Potentiometric Biosensors Based on Lipid Stabilized Membranes ZnO Nanowires 142
7.4 Practical Applications of Lipid Membrane Devices in Biomedical and Clinical Analysis 142
7.4.1 Applications of Lipid Film Devices Based on Polymeric Lipid Membranes 142
7.4.2 Applications of Graphene-Based Devices 143
7.4.3 Applications of the ZnO Nanoelectrode-Based Devices 144
7.5 Conclusions and Future Prospects 145
References 146
8: Dextran-based Hydrogel Layers for Biosensors 148
8.1 Introduction 149
8.2 Fabrication of Carboxymethyl Dextran Layers 152
8.3 CMD Layer Characterization 153
8.3.1 Surface Analytical Techniques 153
8.3.2 Composition, Thickness, and Topography of Ultrathin CMD Layers in Dry State: Characterization by ATR-FTIR, XPS, and AFM Measurements 153
8.3.3 Nanostructure of Ultrathin CMD Layers Under Aqueous Conditions: Characterization by OWLS 156
8.3.4 Viscoelastic Properties of Ultrathin CMD Layers: Characterization by QCM 160
8.3.5 Hydration Properties of Ultrathin CMD Layers: Combining QCM and OWLS Results 163
8.3.6 Thickness and Composition of Spin-Coated and Crosslinked CMD Layers: Characterization by Ellipsometry and XPS 165
8.3.7 Wetting Properties of Spin-Coated and Crosslinked CMD Layers Characterized by Contact Angle Measurements 167
8.3.8 Protein- and Cell-Repellent Ability Characterized by OWLS and Phase Contrast Microscopy 168
8.4 Summary 168
References 169
9: Electrochemical Nanoengineered Sensors in Infectious Disease Diagnosis 174
9.1 Introduction 175
9.2 Detection of Dengue 176
9.3 Detection of Malaria 182
9.4 Conclusion 186
References 187
10: Nanobiotechnology Advancements in Lateral Flow Immunodiagnostics 190
10.1 Introduction 191
10.2 Types of LFIA 193
10.3 Advances in Detection Methods 193
10.4 Smartphone-Based Detection Techniques in LFIA 195
10.5 Sensitivity Enhancement in LFIA Technique 198
10.6 Summary and Future Perspectives 207
References 211
11: Biological Acoustic Sensors for Microbial Cell Detection 214
11.1 Introduction 215
11.2 Sensors Based on Piezoelectric Resonators with a Longitudinal Electric Field 216
11.3 Sensors Based on Piezoelectric Resonators with a Lateral Electric Field 217
11.3.1 The Sensors Using the Bioreceptor Films 217
11.3.2 The Sensors Directly Contacting with Suspension 218
11.3.3 Interaction “Cells–Antibodies” 219
11.3.4 Interaction “Cells–Bacteriophages” 222
11.3.5 Interaction “Cells–Mini-antibodies” 224
11.4 Sensors Based on the Use of Inhomogeneous Piezoactive Acoustic Waves 224
11.4.1 Sensors Using the Active Films with Immobilized Microorganisms 224
11.4.2 Sensors Based on the Use of Surface and Plate Piezoactive Acoustic Waves Without Immobilized Microorganisms 226
11.5 Noncontact Sensor Based on a Slot Acoustic Mode 229
11.6 Conclusion 231
References 231
12: Nanorobots for In Vivo Monitoring: The Future of Nano-Implantable Devices 235
12.1 Introduction of Nanorobotics: Magic Bullets of Future 235
12.1.1 Origin of Nanorobots: From Fiction to Reality 237
12.1.2 Nature: The Inspiration Behind Nanorobotics 238
12.1.3 Advantage of Nanorobots over Conventional Medical Techniques 239
12.2 Nanorobots: Components and Functions 240
12.2.1 Size and Shape 240
12.2.2 Sensors and Actuators 242
12.2.3 Power Generation 243
12.2.4 Propulsion, Control, and Navigation 244
12.2.4.1 External Control Mechanisms 245
12.2.4.2 Internal Control Mechanisms 245
12.2.5 Data Storage and Transmission 246
12.3 Types of Nanorobots 247
12.3.1 Respirocyte 247
12.3.2 Microbivore Nanorobots 248
12.3.3 Clottocyte Nanorobots 248
12.3.4 Chromallocyte (Mobile Cell Repair Nanorobots) 249
12.4 Medical Application of Nanorobots 249
12.4.1 Nanorobots in Cancer Treatment 250
12.4.2 Nanorobots in Diagnosis and Treatment of Diabetes 253
12.4.3 Nanorobots in Retention of Payloads and Wound Healing 253
12.4.4 Surgery, Biopsy, and Thrombolysis by Nanorobots 254
12.5 Future and Commercialization Aspects of Nanorobots 255
References 256
13: Nanobiomaterials in Drug Delivery: Designing Strategies and Critical Concepts for Their Potential Clinical Applications 261
13.1 Introduction 262
13.2 Commonly Used Biomaterials for Nanocarrier Design 263
13.2.1 Natural Polymer-Based Biomaterials 264
13.2.2 Synthetic Polymer-Based Biomaterials 266
13.3 Biomaterial-Based Nanocarriers for Drug Delivery 267
13.3.1 Parenteral Drug Delivery 267
13.3.1.1 Nanomaterials as the Carrier of Liposomes 270
13.3.1.2 Nanomaterials as the Carrier of Micelles 271
13.3.1.3 Nanomaterials as the Carrier of Nanoparticles 274
13.3.2 Mucosal Drug Delivery 275
13.4 Challenges and Future Perspectives on Nanobiomaterials 278
References 279
14: Future Prospected of Engineered Nanobiomaterials in Human Health Care 283
14.1 Introduction 284
14.2 Biomonitors 284
14.3 Wearable Devices 286
14.3.1 Smart Bandages 286
14.3.1.1 Dressings with Active Delivery of Drugs 292
14.3.2 Electronic Skin (e-Skin) 293
14.3.3 Tattoo-Based Electrochemical Sensors 294
14.4 Internal Healthcare Monitors (Implants) 295
14.5 Development of Cyborgs (Prosthetics and Cyborganics) 296
14.6 What Are the Next Steps? 299
References 300

Erscheint lt. Verlag 25.1.2020
Zusatzinfo XII, 294 p. 108 illus., 91 illus. in color.
Sprache englisch
Themenwelt Medizin / Pharmazie Allgemeines / Lexika
Medizin / Pharmazie Medizinische Fachgebiete
Medizin / Pharmazie Physiotherapie / Ergotherapie Orthopädie
Studium Querschnittsbereiche Infektiologie / Immunologie
Naturwissenschaften Biologie Genetik / Molekularbiologie
Naturwissenschaften Biologie Zellbiologie
Technik Medizintechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte Immunodiagnostics • immunosensors • Lab-on-Chip • Microfluidic lateral flow • Nano-Biomaterials • nanotechnology
ISBN-10 981-329-840-5 / 9813298405
ISBN-13 978-981-329-840-8 / 9789813298408
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Antibiotika, Virostatika, Antimykotika, Antiparasitäre Wirkstoffe

von Hans-Reinhard Brodt; Achim Hörauf; Michael Kresken …

eBook Download (2023)
Thieme (Verlag)
164,99