Magnetic Resonance Brain Imaging (eBook)

Modeling and Data Analysis Using R
eBook Download: PDF
2019 | 1st ed. 2019
XVIII, 231 Seiten
Springer International Publishing (Verlag)
978-3-030-29184-6 (ISBN)

Lese- und Medienproben

Magnetic Resonance Brain Imaging - Jörg Polzehl, Karsten Tabelow
Systemvoraussetzungen
74,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book discusses the modeling and analysis of magnetic resonance imaging (MRI) data acquired from the human brain. The data processing pipelines described rely on R. The book is intended for readers from two communities: Statisticians who are interested in neuroimaging and looking for an introduction to the acquired data and typical scientific problems in the field; and neuroimaging students wanting to learn about the statistical modeling and analysis of MRI data. Offering a practical introduction to the field, the book focuses on those problems in data analysis for which implementations within R are available. It also includes fully worked examples and as such serves as a tutorial on MRI analysis with R, from which the readers can derive their own data processing scripts. 

The book starts with a short introduction to MRI and then examines the process of reading and writing common neuroimaging data formats to and from the R session. The main chapters cover three common MR imaging modalities and their data modeling and analysis problems: functional MRI, diffusion MRI, and Multi-Parameter Mapping. The book concludes with extended appendices providing details of the non-parametric statistics used and the resources for R and MRI data.The book also addresses the issues of reproducibility and topics like data organization and description, as well as open data and open science. It relies solely on a dynamic report generation with knitr and uses neuroimaging data publicly available in data repositories. The PDF was created executing the R code in the chunks and then running LaTeX, which means that almost all figures, numbers, and results were generated while producing the PDF from the sources.




Jörg Polzehl is a research associate at the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) in Berlin, Germany. He holds a PhD in Mathematics from Humboldt University Berlin. His main research interests include computational and nonparametric statistics, with a focus on statistical modeling and data analysis in medical imaging. He has been elected as a Fellow of the Institute of Mathematical Statistics (IMS) and is a member of the American Statistical Association (ASA) and the Organization of Human Brain Mapping (OHBM).

Karsten Tabelow is a (particle) physisist by training who currently works as a data scientist at the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) in Berlin, Germany. His interests include magnetic resonance imaging data from the human brain, and data modeling and analysis problems with a focus on structural adaptive smoothing methods and biophysical models. He is also interested in reconstruction problems from physics-based imaging modalities. Lastly, he contributes to the discussions on open science and research data handling, especially within mathematics. He is a member of the OHBM.

Both authors have jointly coauthored several R packages for the analysis of magnetic resonance imaging data.

Erscheint lt. Verlag 25.9.2019
Reihe/Serie Use R!
Use R!
Zusatzinfo XVIII, 231 p. 77 illus., 48 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Studium 1. Studienabschnitt (Vorklinik) Biochemie / Molekularbiologie
Technik Elektrotechnik / Energietechnik
Schlagworte BIDS standard • diffusion models • Functional Connectivity • functional magnetic resonance imaging • Magnetic Reconance Imaging data formats • Multi-Parameter Mapping • Multiple Comparisons • NeuroConductor • preprocessing pipelines • quantitative Magnetic Resonance Imaging • resting state Magnetic Resonance Imaging • Signal Detection • structural adaptive smoothing • Structural Connectivity • structural Magnetic Resonance Imaging
ISBN-10 3-030-29184-7 / 3030291847
ISBN-13 978-3-030-29184-6 / 9783030291846
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
69,99
Das Lehrbuch für das Medizinstudium

von Florian Horn

eBook Download (2020)
Georg Thieme Verlag KG
69,99