Novel Structured Metallic and Inorganic Materials -

Novel Structured Metallic and Inorganic Materials (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
X, 620 Seiten
Springer Singapore (Verlag)
978-981-13-7611-5 (ISBN)
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book describes a series of research topics investigated during the 6 years from 2010 through 2015 in the project 'Advanced Materials Development and Integration of Novel Structured Metallic and Inorganic Materials'. Every section of the book is aimed at understanding the most advanced research by describing details starting with the fundamentals as often as possible. Because both fundamental and cutting-edge topics are contained in this book, it provides a great deal of useful information for chemists as well as for materials scientists and engineers who wish to consider future prospects and innovations. The contents of Novel Structured Metallic and Inorganic Materials are unique in materials science and technology. 

The project was carried out through the cooperation of research groups in the following six institutes in Japan: the Institute for Materials Research (IMR), Tohoku University; the Materials and Structures Laboratory (MSL), Tokyo Institute of Technology; the Joining and Welding Research Institute (JWRI), Osaka University; the Eco-Topia Science Institute (EST), Nagoya University; the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University; and the Institute for Nanoscience and Nanotechnology (INN), Waseda University. 

Major objectives of the project included creation of advanced metallic and inorganic materials with a novel structure, as well as development of materials-joining technologies for development of cutting-edge applications as environmental and energy materials, biomedical materials, and electronic materials for contributing to the creation of a safer and more secure society.


Prof. Yuichi Setsuhara

Joining and Welding Research Institute (JWRI)

Osaka University


Prof. Toshio Kamiya

Laboratory for Materials & Structures

Institute of Innovative Research 

Tokyo Institute of Technology

 

Prof. Shin-ichi Yamaura

Construction Metal Works Unit Laboratory

Fundamental VET

Faculty of Human Resources Development

Polytechnic University



This book describes a series of research topics investigated during the 6 years from 2010 through 2015 in the project "e;Advanced Materials Development and Integration of Novel Structured Metallic and Inorganic Materials"e;. Every section of the book is aimed at understanding the most advanced research by describing details starting with the fundamentals as often as possible. Because both fundamental and cutting-edge topics are contained in this book, it provides a great deal of useful information for chemists as well as for materials scientists and engineers who wish to consider future prospects and innovations. The contents of Novel Structured Metallic and Inorganic Materials are unique in materials science and technology. The project was carried out through the cooperation of research groups in the following six institutes in Japan: the Institute for Materials Research (IMR), Tohoku University; the Materials and Structures Laboratory (MSL), Tokyo Institute of Technology; the Joining and Welding Research Institute (JWRI), Osaka University; the Eco-Topia Science Institute (EST), Nagoya University; the Institute of Biomaterials and Bioengineering (IBB), Tokyo Medical and Dental University; and the Institute for Nanoscience and Nanotechnology (INN), Waseda University. Major objectives of the project included creation of advanced metallic and inorganic materials with a novel structure, as well as development of materials-joining technologies for development of cutting-edge applications as environmental and energy materials, biomedical materials, and electronic materials for contributing to the creation of a safer and more secure society.

Preface 5
Contents 7
Novel Structured Metallic Materials 11
1 Introduction to Amorphous Alloys and Metallic Glasses 12
Abstract 12
1.1 History of the Development of Noncrystalline Alloys—From Amorphous Alloys to Metallic Glasses 12
1.2 Amorphous Alloys and Metallic Glasses 14
1.3 Characteristics of Amorphous Alloys and Metallic Glasses 20
1.3.1 High Mechanical Strength 20
1.3.2 High Corrosion Resistance 22
1.3.3 Excellent Soft Magnetism 23
1.3.4 Viscous Flow Formability in the Supercooled Liquid State 24
1.3.5 Precise Net Castability 26
1.4 Standardization of Metallic Glasses 28
1.5 Summary 30
References 30
2 Applications of Amorphous Alloy/Metallic Glass for Environmental and Energy Engineering, Electronics Engineering, and Biomedical Engineering Fields 32
Abstract 32
2.1 Development of Metallic Glasses for Environmental and Energy Engineering 33
2.1.1 Introduction 33
2.1.2 Metallic Glass for Bipolar Plates of a Proton Exchange Membrane Fuel Cell 34
2.1.3 Au–Cu–Ag–Si Metallic Glass for Micro-/Nanodevices 40
2.1.4 Amorphous Alloys for Hydrogen Permeable Membrane 41
2.1.5 Porous Metal Catalysts Produced from Amorphous Alloys and Metallic Glasses 41
2.1.6 Bonding and Joining of Metallic Glasses 42
2.1.7 Summary of the Studies for Environmental and Energy Engineering 45
2.2 Development of Metallic Glasses for Electronic Engineering 46
2.3 Development of Metallic Glasses for Applications as Biomaterials and Biomedical Materials 50
2.3.1 Introduction 50
2.3.2 Bioinert Metallic Glasses 51
2.3.3 Biodegradable Metallic Glasses 55
2.3.4 Porous Bulk Metallic Glasses 58
2.3.5 Summary of the Studies for Biomedical Engineering 58
2.4 Low Magnetic Susceptibility Metallic Glasses for Magnetic Resonance Imaging 59
2.4.1 Introduction 59
2.4.2 Magnetic Susceptibility of Zr-Based Metallic Glass Alloys 59
2.4.3 Mg-Based Metallic Glasses for MRI 62
References 65
3 Ti-Based Biomedical Alloys 69
Abstract 69
3.1 Introduction 69
3.2 Types of Ti Alloys for Biomedical Applications 71
3.3 Pure Ti 72
3.4 (??+??)-Type Ti Alloys 72
3.5 ?-Type Ti Alloys 74
3.5.1 General ?-Type Ti Alloys 74
3.5.2 Superelastic and Shape-Memory ?-Type Ti Alloys 75
3.5.3 Young’s Modulus Self-adjustable ?-Type Ti Alloys 77
3.5.4 ?-Type Ti Alloys for Reconstructive Implants 79
3.5.5 Summary 80
References 80
4 Mn-Based Ferromagnetic Alloys 85
Abstract 85
4.1 Introduction 86
4.2 Magnetic Properties of Mn-Based Layered Compounds MnAlGe and MnGaGe 87
4.3 In-Magnetic-Field Annealing of MnBi 91
References 93
5 Functional Materials Developed in IMR 96
Abstract 96
5.1 Nanoporous Metals 97
5.1.1 Morphology of As-dealloyed Ti–Cu Alloys 97
5.1.2 Characteristics of As-dealloyed Ti–Cu Alloys 100
5.1.3 Discussion 102
5.2 Zr-Based Zr–Ti Gradient Material Fabricated by Selective Laser Melting Process for Bone Plate Applications 103
5.2.1 Introduction 103
5.2.2 Zr-Based Zr–Ti Gradient Material Fabricated via SLM 104
5.2.3 Summary 106
5.3 Magnetostrictive Fe–Co Alloy Thin Film 106
Acknowledgements 110
References 110
Novel Structured Inorganic Materials 111
6 Exotic Crystal Structures and Electronic Structures in Novel Structured Inorganic Materials 112
Abstract 112
6.1 Introduction 112
6.2 Electronic Structure of Oxides 114
6.2.1 Formation of Band Gap 114
6.2.2 Electron Transport and Defect Levels in n-Type AOSs 115
6.3 Materials Design for Wide Band Gap p-Type Semiconductors 117
6.3.1 Guiding Principles for p-Type Transparent Oxide Semiconductors 117
6.3.2 Better P-Type Transparent Oxide Semiconductors: Layered Oxychalcogenides 118
6.3.3 Two-Dimensional Electronic Structure in LaCuOCh 119
6.4 Doping 121
6.4.1 Empirical Doping Limit Rule 121
6.4.2 Break the Empirical Doping Limit by Natural Nanostructure 121
References 124
7 Interface-Related Magnetic Phenomena in Novel Heterostructures 126
Abstract 126
7.1 Introduction 126
7.2 Interface-Related Magnetic Anisotropy 127
7.2.1 Magnetoelastic Anisotropy 127
7.2.2 Unidirectional Anisotropy Due to Exchange Bias Effect 129
7.3 Electric Field Effect on Magnetic Properties 130
7.3.1 Electric Field Control of Magnetic Domain Walls 130
7.3.2 Electric Field Control of Perpendicular Magnetization 132
7.4 Electric Field Control of Magnetic Phases 134
7.5 Electric Field Control of Spin Polarization 136
7.6 Summary and Outlook 137
References 138
8 Microstructure Design for Oxide/Non-oxide Ceramics for Structural Applications 140
Abstract 140
8.1 Ceramics for Structural Applications 140
8.1.1 Engineering Ceramics 140
8.1.2 Microstructure–Property–Processing Relations 141
8.2 Sintering Process of Ceramics 142
8.2.1 Continuum Mechanics of Sintering in Macroscopic Scale 142
8.2.2 Micro–Meso–Macro Relationship for Sintering Mechanics 144
8.2.3 Observation of Microstructure Evolution During Sintering 144
8.3 Microstructure Design for Tough and Strong Ceramics 145
8.3.1 Toughening Mechanisms 145
8.3.2 A Novel Structured Nanocrystalline Ceramics 146
References 148
Integration and Processing of Novel Structured Materials 150
9 Gas Tungsten Arc Welding 151
Abstract 151
9.1 Introduction 151
9.2 Principles 152
9.2.1 Energy Transport 152
9.2.2 Momentum Transport 156
9.2.3 Weld Pool Behaviour 158
9.3 Future Trends of Applications 161
References 163
10 Laser Welding 164
Abstract 164
10.1 Characteristics of Laser Welding 164
10.2 Lasers for Welding 165
10.3 Laser Welding Phenomena 168
10.4 Laser Weld Penetration and Welding Defects 172
10.5 Evolution of Laser Welding 176
Acknowledgements 179
References 179
11 Friction Stir Welding 180
Abstract 180
11.1 Features of the Friction Stir Welding 180
11.2 Tool for High-Temperature Alloys 183
11.3 Friction Stir Welding of Ti Alloys—A Metal Accompanied by Transformation 183
11.4 Non-transformation Friction Stir Welding of Carbon Steel 185
11.5 Austenite Stabilizing Method by Friction Stir Welding 187
11.6 Summary 190
References 191
12 Soldering Process 193
Abstract 193
12.1 History and Definition of Soldering 193
12.1.1 Sn-Pb Solder 193
12.1.2 Lead-Free Solder 194
12.2 Soldering Process 196
12.3 Characteristics of Lead-Free Solder 197
12.4 High-Temperature Bonding 199
References 202
13 Metallurgical Characterization of Joined Materials 204
Abstract 204
13.1 Introduction 204
13.2 Microstructure-Controlled Increase of Fatigue Strength and Toughness 205
13.2.1 Issues to Be Addressed in Mechanical Properties of Steel Welds 205
13.2.2 Fatigue Strength Increase by FSP Microstructural Modification 205
13.2.3 Charpy Absorbed Energy Increase by FSP Microstructural Modification 209
13.3 Cu Interconnects in ULSI Devices Using Cu(Ti) Alloy Films 211
13.3.1 Identification of Ti-Based SFB Using XPS 212
13.3.2 Ti-Based SFB Growth Characterized by RBS 214
13.4 Summary 217
Acknowledgements 218
References 218
14 Plasma Processes for Functionalization and Control of Materials Surface 220
Abstract 220
14.1 Introduction 220
14.2 Inductively Coupled RF Plasma for Low-Damage Process 222
14.3 Plasma Interactions with Organic Materials 225
14.4 Summary 229
References 229
15 Laser-Induced Processes for Functionalization of Materials Surface 231
Abstract 231
15.1 Introduction 231
15.1.1 Materials Surface for Cell Spreading 231
15.1.2 Periodic Nanostructures Formation with Femtosecond Lasers 232
15.1.3 Mechanism Proposed for Periodic Nanostructures Formation 232
15.2 Surface Plasmon Polaritons Model 233
15.3 Femtosecond Laser-Induced Periodic Nanostructures on TiO2 Film 235
15.3.1 Methods for Formation of Periodic Nanostructures on TiO2 Film 236
15.3.2 Periodic Nanostructures Formation on TiO2 Films 237
15.4 Summary 238
References 239
16 Powder Metallurgy Processes for Composite–Materials Integration 241
Abstract 241
16.1 Introduction 242
16.2 Advanced Mixing Process of Unbundled CNTs with Metal Powders 243
16.3 Consolidation of CNTs/Al Composite Powder and Mechanical Properties of Nanocomposite 248
16.4 Conclusions 252
References 252
17 Dry Nanoparticle Processes for Functional Materials Integration 254
Abstract 254
17.1 Introduction 254
17.2 Material Design by Nanoparticle Bonding Processes 255
17.3 Fabrication of High-Performance Thermal Insulation Boards 256
17.4 Preparation of Cathode Materials for Lithium-Ion Batteries 257
17.4.1 Direct Synthesis of LiFePO4/C Composite Granules 257
17.4.2 Core–Shell and Concentration-Gradient Cathode Particles 259
17.5 Direct Fabrication of Electrode for Solid Oxide Fuel Cells 262
References 263
18 Three-Dimensional Printing Process 265
Abstract 265
18.1 Stereolithography of Additive Manufacturing 265
18.2 Photonic Crystals with Dielectric Lattice 267
18.3 Photonic Crystal with Magnetic Lattice 272
18.4 Porous Electrode with Ordered Structure 277
18.5 Biological Scaffolds with Graded Lattice 279
References 281
Novel Structured Materials for Environmental Protection and Advanced Energy 283
19 Current and Future Nanostructured Metals 284
Abstract 284
19.1 Introduction 284
19.2 Preparation of NP Metals 286
19.3 Nanoporous Metals in Heterogeneous Catalysis 287
19.4 Optical Applications of NPMs 290
19.5 Future Remarks 291
19.6 Conclusions 292
References 292
20 Amorphous Alloy Membranes for Hydrogen Separation and Purification 294
Abstract 294
20.1 Introduction 295
20.2 Hydrogen Permeable Membrane for Hydrogen Production 295
20.3 Hydrogen Permeability of Amorphous Alloys 296
20.4 Hydrogen Permeability of the Ni–Nb–Zr Amorphous Alloys 296
20.5 Local Atomic Configuration of the Ni–Nb–Zr Amorphous Alloys 300
20.6 Long-Time Durability Tests 302
20.7 Hydrogen Production by Methanol Steam Reforming Using a Melt-Spun Ni–Nb–Ta–Zr–Co Amorphous Alloy Membrane 304
20.8 Amorphous Alloys with Higher Nb Content 307
20.9 Summary 309
References 310
21 Syntheses of Composite Porous Materials for Solid Oxide Fuel Cells 312
Abstract 312
21.1 Introduction 312
21.2 Precipitation of Metal Hydroxides 315
21.3 Coprecipitation Under Reverse Sequence 316
21.4 Coprecipitation in YSZ Nanocrystal Sol 318
21.5 Coprecipitation with Anionic Zr(IV) Complex Solution 321
21.6 Conclusion 322
References 323
22 Hybrid Membrane-Type Fuel Cells for Intermediate Temperatures 325
Abstract 325
22.1 Introduction 325
22.2 Proton Conduction in the PEFC Membranes 326
22.3 Synthesis of Siloxane-Based Hybrid Materials 327
22.4 Synthesis of Inorganic–Organic Hybrid Membrane 330
22.5 Proton Conductivity and Fuel Cell Properties of the Membrane 333
22.6 Conclusions 335
References 336
23 Synthesis of Nanomaterials Using Solution Plasma Process 338
Abstract 338
23.1 Introduction 338
23.2 One-Step Synthesis of Gold Bimetallic Nanoparticles with Various Metal Compositions 339
23.3 Synthesis of Mesoporous Silica 342
23.4 SPP Synthesis of Platinum Nanoparticles in Mesoporous Silica and Characterization of Their Catalytic Properties in the Selective Oxidation Reaction of CO 345
23.5 Carbon Catalyst for Fuel Cells 345
23.6 Conclusions 349
Acknowledgements 349
References 349
24 Metal Oxide Materials for Automotive Catalysts 351
Abstract 351
24.1 Catalysts and Metal Oxide Nanomaterials 351
24.2 Alumina Support and Its Modification 353
24.3 Ceria-Zirconia for Oxygen Storage Capacity (OSC) 356
24.4 Summary 360
References 361
Novel Structured Materials for Bio-Medical Applications 362
25 Current and Future Hard Materials for Biomedical Field 363
Abstract 363
25.1 Hard Biomaterials 363
25.2 Metals 365
25.3 Ceramics 368
25.4 Polymers 369
25.5 Surface Treatment 372
25.5.1 Necessity 372
25.5.2 Surface Treatment for Bone Formation 374
25.5.3 Evolution of Surface Treatment for Bone Formation 374
25.6 Conclusions 375
References 375
26 Mechanical Property of Biomedical Materials 376
Abstract 376
26.1 Introduction 376
26.2 Tensile Properties in Air 377
26.3 Fatigue Properties in Air 378
26.4 Fatigue Crack Propagation in Air 379
26.5 Surface Substructure with Cyclic Loading in Physiological Environment 381
26.6 Fatigue Properties in Simulated Body Fluid 382
26.7 Fatigue Crack Propagation in Simulated Body Fluid 384
26.8 Fatigue Properties of Medical Device 385
References 388
27 Chemical Properties of Bio-medical Materials 389
Abstract 389
27.1 Introduction 389
27.2 Evaluation of Corrosion Behavior 390
27.2.1 Testing Environment 390
27.2.1.1 Temperature and pH 390
27.2.1.2 Concentration of Dissolved Oxygen 391
27.2.1.3 Inorganic Components 392
27.2.1.4 Organic Components 392
27.2.2 Corrosion Evaluation Techniques 393
27.2.2.1 Dissolution Test 393
27.2.2.2 Open-Circuit Potential and Anodic Polarization Tests 394
27.2.2.3 Electrochemical Impedance Spectroscopy 397
27.3 Summary 399
References 400
28 Biological Properties of Biomedical Materials 401
Abstract 401
28.1 Biocompatibility 401
28.2 Cytocompatibility 403
28.3 Mechanisms of Cell Behaviors on Biomaterials 404
28.4 Evaluations of Cellular Functions 408
References 410
29 Metallic Glasses for Biomedical Applications 411
Abstract 411
29.1 Introduction 411
29.2 Biocompatibility of Biomedical Bulk Metallic Glasses 413
29.2.1 Biocompatibility of Ti-Based Bulk Metallic Glasses 413
29.2.2 Biocompatibility of Mg-Based Bulk Metallic Glasses 415
29.3 Applications of Biomedical Bulk Metallic Glasses 417
29.3.1 Surgical Tools 418
29.3.2 Stents 419
29.4 Summary 422
References 422
30 Low-Young’s-Modulus Materials for Biomedical Applications 424
30.1 Introduction 424
30.2 Selection of Alloying Elements 425
30.3 Design of Low-Young’s-Modulus Titanium Alloys for Biomedical Applications 426
30.4 Manufacturing Process of Designed Alloy 427
30.5 Distribution of Alloying Elements in Ingot 428
30.6 Mechanical Properties 428
30.6.1 Young’s Modulus 428
30.6.2 Static Strength and Ductility 429
30.6.3 Dynamic Strength and Ductility 430
30.7 Titanium Alloys with Low and Adjustable Young’s Modulus 433
30.8 Low Young’s Modulus and Stress Shielding 436
30.9 Corrosion Resistance 438
30.10 Bioactive Ceramic Surface Modification 441
30.11 Summary 444
References 445
31 Electret Ceramics for Biomedical Applications 447
Abstract 447
31.1 Electret 447
31.2 Properties of Hydroxyapatite Electret 448
31.2.1 Crystal Structure of Hydroxyapatite 448
31.2.2 Electric Properties of Hydroxyapatite Electret 450
31.3 Applications of Hydroxyapatite Electret 453
31.3.1 Cell Behavior on Hydroxyapatite Electret 453
31.3.2 New Bone Formation on Hydroxyapatite Electret 453
References 455
32 Surface Modification with Femtosecond Laser 457
Abstract 457
32.1 Introduction 458
32.2 Surface Modification with a Femtosecond Laser 459
32.2.1 Morphology and Surface Roughness 459
32.2.2 Surface Chemical Contents 459
32.2.3 Surface Wettability 460
32.3 Bioactivity Evaluation 461
32.3.1 Soaking in Simulation Body Fluid 461
32.3.2 In Vitro Study 461
32.3.2.1 In Vitro Models 462
32.3.2.2 Cell Adhesion 462
32.3.2.3 Cell Proliferation 462
32.3.2.4 Cell Differentiation 464
32.3.2.5 Calcification 464
32.3.2.6 Hemocompatibility 464
32.3.3 In Vivo Studies 466
32.4 Future Developments and Applications 467
32.5 Concluding Remarks 467
References 468
33 Surface Modification with Hydrothermal–Electrochemical Technique 472
Abstract 472
33.1 Introduction 472
33.2 Surface Modifications on TiCuZrPd and TNTZ Substrates 474
33.2.1 Pretreatments 474
33.2.2 Solution Processes 474
33.2.3 Measurements and Evaluations of Samples 476
33.3 Surface Modifications by Solution Processes 476
33.3.1 TiCuZrPd Samples 476
33.3.2 TNTZ Samples 481
33.4 Conclusions 488
Acknowledgements 488
References 489
34 Surface Modification with Hydrophilization 491
Abstract 491
34.1 Introduction 491
34.2 TiO2 Coating (Anodizing in Aqueous Solution) 492
34.3 Evaluation of Osteoconductivity 496
34.4 Factors that Influence Osteoconductivity 496
34.5 Surface Hydrophilicity 499
34.5.1 Surface Hydrophilicity of TiO2 Films [52] 499
34.5.2 Osteoconductivity of TiO2 Films 499
34.6 Applications 503
34.6.1 Superhydrophilic or Hydrophobic Surface of Valve Metals 503
34.6.2 Protein Adsorbability of Superhydrophilic or Hydrophobic Surface 503
34.6.3 Superhydrophilic Surface of Ceramics and Polymers 504
34.7 Conclusion 505
References 505
35 Surface Modification with Micro-arc Oxidation 508
Abstract 508
35.1 Introduction—Method and Principals of Micro-arc Oxidation (MAO) 509
35.2 Bioactivity Evaluation in Vitro 512
35.3 In Vivo Evaluation 514
35.3.1 Animal Testing 514
35.3.2 Histomorphometric Evaluation 514
35.3.3 Mechanical Stability Evaluation 516
35.3.3.1 Fracture Force Measurement 516
35.3.3.2 Resonance Frequency Measurement 517
35.3.3.3 Three-Dimensional Morphometric Evaluation 517
References 518
Novel Structured Materials for Electronic Devices 520
36 Spin Electronics 521
36.1 Introduction to Giant Magnetoresistance 521
36.1.1 Giant Magnetoresistance (GMR) Effect 522
36.1.2 Mechanism of GMR Effect 524
36.1.3 Applications of GMR Effect 525
36.2 Half-Metallic Heusler Alloys for Spin Electronics 526
36.3 Magnetoresistance Effects Using Heusler Alloy Thin Films 527
36.3.1 Tunnel Magnetoresistance Effect Using Heusler Alloy Thin Films 528
36.3.2 Current-Perpendicular-to-Plane Giant Magnetoresistance Effect Using Heusler Alloy Thin Films 529
36.4 Spin Torque Oscillation Using Heusler Alloys 531
36.4.1 Spin Angular Momentum Transfer 531
36.4.2 Spin Torque Oscillation 532
36.4.3 Heusler-Based Spin Torque Oscillator 534
References 536
37 Biosensors Based on Field-Effect Transistors 540
Abstract 540
37.1 Introduction 541
37.2 Principle of FET-Based Biosensors 542
37.3 DNA Sequencing 544
37.4 Functional Analysis of Cells 547
37.5 Detection of Electrically Neutral Molecules 549
37.6 Conclusion 553
Acknowledgements 553
References 553
38 Amorphous Oxide Semiconductor Thin-Film Transistors 555
Abstract 555
38.1 Introduction 555
38.2 History and Present Status of AOS TFT Technology 556
38.3 New Applications of AOS 557
38.4 Electron Transport and Subgap Defects in TAOS 558
38.5 Deposition Condition to Obtain Good AOS TFT 560
38.6 Defects in AOSs (See Ref. [4] for the Latest Review) 563
38.7 Development of Amorphous GaOx by Suppressing Charge Compensation 566
References 567
39 Electrode Formation Using Electrodeposition and Direct Bonding for 3D Integration 570
Abstract 570
39.1 Introduction 571
39.2 Experimental Procedure 573
39.2.1 Fabrication of Nanoporous Powder 573
39.2.2 Fabrication of Nanoporous Powder Bump 574
39.2.3 VUV/O3 Pretreatment 575
39.2.4 Bonding Procedure and Evaluation 575
39.2.5 Electrodeposition Procedure and Evaluation 576
39.3 Results and Discussion 577
39.3.1 Fabrication of Nanoporous Powder 577
39.3.2 Fabrication of Nanoporous Bump and VUV/O3 Pretreatment 577
39.3.3 Bonding Evaluation 578
39.3.4 Preparation of the Nanoporous Au 578
39.3.5 Evaluation of Bond Strength 582
39.4 Conclusions 582
Acknowledgements 583
References 583
40 Carbon Nanotube Forests on SiC: Structural and Electrical Properties 586
Abstract 586
40.1 Introduction 586
40.2 Formation of a CNT Forest on SiC 587
40.3 Schottky Barrier Height of the CNT/SiC Interface 588
40.3.1 Experimental Model 588
40.3.2 Device Fabrication 590
40.3.3 Schottky Barrier Height 591
40.3.4 Model of the Low Schottky Barrier Height 592
40.4 CNT/CNT Contact Conductivity 594
40.4.1 Sheet Conductivity 594
40.4.2 CNT/CNT Contact Conductivity 596
40.4.3 CNT/CNT Tunneling Conductivity 598
40.5 Conclusion 599
References 599

Erscheint lt. Verlag 1.7.2019
Zusatzinfo X, 620 p. 428 illus., 232 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Chemie Anorganische Chemie
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte advanced materials development • advanced materials integration • biomedical materials • electronics materials • Energy Materials • environmental materials • novel structured inorganic materials • novel structured metallic materials
ISBN-10 981-13-7611-5 / 9811376115
ISBN-13 978-981-13-7611-5 / 9789811376115
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 33,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95
Allgemeine und Anorganische Chemie

von Erwin Riedel; Christoph Janiak

eBook Download (2022)
De Gruyter (Verlag)
49,95