New Directions in Thin Film Nanophotonics (eBook)
X, 172 Seiten
Springer Singapore (Verlag)
978-981-13-8891-0 (ISBN)
Prof. Ranjan Singh is an Assistant Professor at the School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore. He received his M. S. degree in Optoelectronics and Laser Technology from Cochin University of Science and Technology, India and PhD in photonics from Oklahoma State University, USA. Before joining NTU, he was a postdoctoral research associate at the Los Alamos National Laboratory, USA.
Prof. Antonio De Luca is an Associate Professor of Applied Physics at University of Calabria. He is affiliated to INSTM, the National Consortium on the Materials Science and Technology and Co-Chair of the scientific initiative 'From Life to Life' National Academy of Lincei. He is the President of the 'Associazione NanoPlasm' that is involved to the promotion of research activities in Plasmonics and Nano-Photonics. He is also affiliated with CNR-National Research Council, Nanotec Institute - Italy. He completed his PhD at University of Calabria.
Prof. Giuseppe Strangi is Professor of Physics and General Medical Sciences at Case Western Reserve University, USA. He also holds an endowed chair professorships as Ohio Research Scholar in Surfaces of Advanced Materials at CWRU. He is senior scientist of the National Research Council (CNR- Italy). Strangi is the President of the Scientific Committee of the Foundation 'Con il Cuore', a national foundation that supports cancer research in Europe and he is the General Chair of the International Conference - NANOPLASM 'New Frontiers in Plasmonics and Nanophotonics'. He is fellow of The Institute of Science of the Origins and of the Case Comprehensive Cancer Center (CWRU), Senior Member of Optical Society of America and American Physical Society.
This book highlights recent advances in thin-film photonics, particularly as building blocks of metamaterials and metasurfaces. Recent advances in nanophotonics has demonstrated remarkable control over the electromagnetic field by tailoring the optical properties of materials at the subwavelength scale which results in the emergence of metamaterials and metasurfaces. However, most of the proposed platforms require intense lithography which makes them of minor practical relevance. Stacked ultrathin-films of dielectrics, semi-conductors, and metals are introduced as an alternative platform that perform unique or similar functionalities. This book discusses the new era of thin film photonics and its potential applications in perfect and selective light absorption, structural coloring, biosensing, enhanced spontaneous emission, reconfigurable photonic devices and super lensing.?
Preface 6
Contents 8
Development and Applications of Metal/Dielectric Resonant Cavity-Based Thin Film Structures 12
1 Perfect Light Absorption in Thin and Ultra-Thin Films and Its Applications 13
1.1 Introduction 13
1.2 Approaches to Realize Perfect Light Absorbers 14
1.3 Lithography-Free Perfect Light Absorption in Critically Coupled, Interference Based, Thin and Ultrathin Films 16
1.4 Designer Perfect Light Absorption in Thin Film Absorbers 19
1.4.1 Designer Wavelength Range 19
1.4.2 Designer Absorption Bandwidth 21
1.4.3 Designer Profile of Optical Losses 23
1.4.4 Designer Perfect Light Absorption Angle 24
1.5 Iridescence Properties of Thin-Film Interference-Based Light Absorbers 25
1.6 Thermally Induced Perfect Light Absorption in Low Reflectance Metals 27
1.7 Applications 31
1.7.1 Structural Colors Using Thin-Film Light Absorbers 31
1.7.2 Hydrogen Gas Sensing Using Thin-Film Light Absorbers 33
References 35
2 Realization of Point-of-Darkness and Extreme Phase Singularity in Nanophotonic Cavities 38
2.1 Topological Darkness 38
2.2 Lithography-Free Nanophotonic Cavities 39
2.3 Singular Phase at the Point-of-Darkness 41
2.4 Phase-Sensitive Biosensing 44
2.5 Microfluidics Integrated Cavities 47
2.6 Real-Time Sensing of Small Biomolecules 49
References 52
3 Phase Change Material-Based Nanophotonic Cavities for Reconfigurable Photonic Device Applications 54
3.1 Phase Change Material-Tuned Photonics 54
3.2 Tunable Color Filters Based on Multilayer Stacks 56
3.3 Tunable Perfect Absorption 58
3.4 Tunable Singular Phase at the Point-of-Darkness 60
3.5 Enhanced and Tunable Goos-Hanchen Shift at the Point-of-Darkness 63
References 66
4 Sub-wavelength Nanopatterning Using Thin Metal Films 68
4.1 Laser Interference Lithography 68
4.2 Evanescent Wave Interference Lithography 69
4.3 Plasmonic Lithography 71
4.4 Theoretical Analysis of Surface Plasmon Interference 72
4.5 Numerical Analysis of Surface Plasmon Interference 78
4.6 Nanopatterning Based on Multiple Beams Surface Plasmon Interference 80
References 86
Development and Applications of Multilayered Hyperbolic Metamaterials 88
5 Dielectric Singularities in Hyperbolic Metamaterials 89
5.1 Introduction 89
5.2 Effective Medium Theory and HMMs Dispersion Relation 90
5.3 Design of the Epsilon-Near-Zero-and-Pole Condition 94
5.4 Far-Field Analysis and Scattering Parameters of Ag/ITO ENZP HMM 97
5.5 Light Propagation at the ENZP Wavelength and Supercollimation Effect 99
5.6 ENZP Perfect Lens 101
5.7 Three Materials ENZP HMMs 103
References 108
6 Resonant Gain Singularities in Hyperbolic Metamaterials 110
6.1 Resonant Gain Epsilon-Near-Zero and Pole Condition 110
6.2 Design of the Gain Blend 112
6.2.1 Step 1—Selecting a High Refractive Index Dielectric 112
6.2.2 Step 2—Selecting a Dye with Emission Peaked at 426 nm 113
6.2.3 Step 3—Calculating the Value of ?d'' for Which ? '' Shows a Pole at 426 nm 113
6.2.4 Step 4 and 5—Calculation of the Concentration overlineN0 of Dye Molecules and of the “Gain Blend” Effective Permittivity 114
6.2.5 Step 6—Verifying the Presence of the “Resonant Gain Singularity” in ? '' at the ENZP Wavelength 116
6.3 Supercollimation and Light Amplification in the RG-HMM 116
6.4 Self-Amplified Perfect Lens (APL) 119
References 121
7 Metal/Photoemissive-Blend Hyperbolic Metamaterials for Controlling the Topological Transition 123
7.1 Introduction 123
7.2 Design, Fabrication and Characterization of the Thermo-Responsive Blend 124
7.3 Design, Fabrication and Characterization of the HMM Embedding the Thermo-Responsive Blend 128
7.4 Thermal Tunability of the Optical and Photophysical Response of the HMM 130
References 134
8 Guided Modes of Hyperbolic Metamaterial and Their Applications 135
8.1 Guided Modes of Hyperbolic Metamaterials 135
8.2 Excitation of Guided Modes of HMM 136
8.2.1 Using Grating Coupling Technique 136
8.2.2 Using Prism Coupling Technique 142
8.3 Applications of Grating-Coupled HMMs 145
8.3.1 Ultrasensitive Plasmonic Biosensing 145
8.3.2 Spontaneous Emission Enhancement 152
8.3.3 Multiband, Broad- and Narrow-Band Perfect Absorption and Absorption-Based Plasmonic Sensors 157
References 162
9 Graphene and Topological Insulator-Based Active THz Hyperbolic Metamaterials 165
9.1 Introduction 165
9.2 Graphene-Based Hyperbolic Metamaterials 166
9.3 Van der Waals Superlattice-Based Hyperbolic Metamaterials 168
9.4 Negative Refraction in THz Hyperbolic Metamaterials 169
9.4.1 Negative Refraction in Graphene-Based HMMs 170
9.4.2 Negative Refraction in Topological Insulator-Based HMMs 171
9.5 Excitation of BBP Modes of Graphene-Based HMMs 173
9.6 Active Hyperbolic Metamaterials Based on Topological Insulator and Phase Change Material 175
References 177
Erscheint lt. Verlag | 27.6.2019 |
---|---|
Reihe/Serie | Progress in Optical Science and Photonics | Progress in Optical Science and Photonics |
Zusatzinfo | X, 172 p. |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Atom- / Kern- / Molekularphysik |
Naturwissenschaften ► Physik / Astronomie ► Festkörperphysik | |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Technik ► Elektrotechnik / Energietechnik | |
Technik ► Maschinenbau | |
Schlagworte | biosensing • Critical light coupling • Epsilon near zero metamaterials • gas sensing • Hyperbolic Metamaterials • Nanophotonic cavity • negative refraction • Perfect light absorption • Phase singularity • Resonant gain singularities • Subwavelength nanopatterning • Super lensing • Terahertz frequencies • Thin-film optical absorbers • ultrathin films |
ISBN-10 | 981-13-8891-1 / 9811388911 |
ISBN-13 | 978-981-13-8891-0 / 9789811388910 |
Haben Sie eine Frage zum Produkt? |
Größe: 9,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich