Stochastic Evolution Systems (eBook)
XVI, 330 Seiten
Springer International Publishing (Verlag)
978-3-319-94893-5 (ISBN)
This monograph, now in a thoroughly revised second edition, develops the theory of stochastic calculus in Hilbert spaces and applies the results to the study of generalized solutions of stochastic parabolic equations.
The emphasis lies on second-order stochastic parabolic equations and their connection to random dynamical systems. The authors further explore applications to the theory of optimal non-linear filtering, prediction, and smoothing of partially observed diffusion processes. The new edition now also includes a chapter on chaos expansion for linear stochastic evolution systems.
This book will appeal to anyone working in disciplines that require tools from stochastic analysis and PDEs, including pure mathematics, financial mathematics, engineering and physics.
Boris Rozovsky earned a Master's degree in Probability and Statistics, followed by a PhD in Physical and Mathematical Sciences, both from the Moscow State (Lomonosov) University. He was Professor of Mathematics and Director of the Center for Applied Mathematical Sciences at the University of Southern California. Currently, he is the Ford Foundation Professor of Applied Mathematics at Brown University.
Sergey Lototsky earned a Master's degree in Physics in 1992 from the Moscow Institute of Physics and Technology, followed by a PhD in Applied Mathematics in 1996 from the University of Southern California. After a year-long post-doc at the Institute for Mathematics and its Applications and a three-year term as a Moore Instructor at MIT, he returned to the department of Mathematics at USC as a faculty member in 2000. He specializes in stochastic analysis, with emphasis on stochastic differential equation. He supervised more than 10 PhD students and had visiting positions at the Mittag-Leffler Institute in Sweden and at several universities in Israel and Italy.
Boris Rozovsky earned a Master’s degree in Probability and Statistics, followed by a PhD in Physical and Mathematical Sciences, both from the Moscow State (Lomonosov) University. He was Professor of Mathematics and Director of the Center for Applied Mathematical Sciences at the University of Southern California. Currently, he is the Ford Foundation Professor of Applied Mathematics at Brown University.Sergey Lototsky earned a Master’s degree in Physics in 1992 from the Moscow Institute of Physics and Technology, followed by a PhD in Applied Mathematics in 1996 from the University of Southern California. After a year-long post-doc at the Institute for Mathematics and its Applications and a three-year term as a Moore Instructor at MIT, he returned to the department of Mathematics at USC as a faculty member in 2000. He specializes in stochastic analysis, with emphasis on stochastic differential equation. He supervised more than 10 PhD students and had visiting positions at the Mittag-Leffler Institute in Sweden and at several universities in Israel and Italy.
1 Examples and Auxiliary Results.- 2 Stochastic Integration in a Hilbert Space.- 3 Linear Stochastic Evolution Systems in Hilbert Spaces.- 4 Ito's Second Order Parabolic Equations.- 5 Ito's Partial Differential Equations and Diffusion Processes.- 6 Filtering, Interpolation and Extrapolation of Diffusion Processes.- 7 Hypoellipticity of Ito's Second Order Parabolic Equations.- 8 Chaos Expansion for Linear Stochastic Evolution Systems.- Notes.- References.- Index.
Erscheint lt. Verlag | 3.10.2018 |
---|---|
Reihe/Serie | Probability Theory and Stochastic Modelling | Probability Theory and Stochastic Modelling |
Zusatzinfo | XVI, 330 p. 2 illus. |
Verlagsort | Cham |
Sprache | englisch |
Original-Titel | Stochastic Evolution Systems |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Naturwissenschaften ► Physik / Astronomie | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | backward diffusion equation • Boundary value problem • chaos solution of parabolic equations • diffusion process • Extrapolation • filtering problem • Hormander's condition in filtering • Interpolation • local martingale • Markov Property • Martingale • MSC (2010): 60H15, 35R60 • partial differential equation • Partial differential equations • Sobolev Space • stochastic characteristics • stochastic integration in Hilbert space |
ISBN-10 | 3-319-94893-8 / 3319948938 |
ISBN-13 | 978-3-319-94893-5 / 9783319948935 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich