Nature’s Patterns and the Fractional Calculus

(Autor)

Buch | Hardcover
XIV, 199 Seiten
2017
De Gruyter (Verlag)
978-3-11-053411-5 (ISBN)
119,95 inkl. MwSt
Complexity increases with increasing system size in everything from organisms to organizations. The nonlinear dependence of a system’s functionality on its size, by means of an allometry relation, is argued to be a consequence of their joint dependency on complexity (information). In turn, complexity is proven to be the source of allometry and to provide a new kind of force entailed by a system‘s information gradient. Based on first principles, the scaling behavior of the probability density function is determined by the exact solution to a set of fractional differential equations. The resulting lowest order moments in system size and functionality gives rise to the empirical allometry relations. Taking examples from various topics in nature, the book is of interest to researchers in applied mathematics, as well as, investigators in the natural, social, physical and life sciences. ContentsComplexityEmpirical allometryStatistics, scaling and simulationAllometry theoriesStrange kineticsFractional probability calculus

Bruce J. West, US Army Research Office, Cary, US

Table of Content:

Chapter 1: Complexity Science

1.1 It started with physics

1.2 Complexity

1.3 Measures of size

1.4 Allometry heuristics

1.5 Overview

Chapter 2: Empirical Allometry

2.1 Living networks

2.2 Physical networks

2.3 Natural history

2.4 Sociology

2.5 Summary

Chapter 3 Statistics, Scaling and Simulation

3.1 Interpreting fluctuations

3.2 Phenomenological distributions

3.3 Are ARs universal?

3.4 Summary

Chapter 4: Models & Derivations of ARs

4.1 Optimization principles

4.2 Scaling and allometry

4.3 Stochastic differential equations

4.4 Fokker-Planck equations

4.5 Summary

Chapter 5: Complex and Strange Kinetics

5.1 Fractional thinking

5.2 Fractional rate equations

5.3 Fractional Poisson process

5.4 A closer look at complexity

5.5 Recapitulation

5.6 Appendix

Chapter 6: Fractional Probability Calculus

6.1 Fractional Fokker-Planck equation

6.2 Fully fractional phase space equations

6.3 Entropy entails allometry

6.4 Statistics of allometry parameters

6.5 Discussion and conclusions

6.6 Epilogue

Erscheinungsdatum
Reihe/Serie Fractional Calculus in Applied Sciences and Engineering ; 2
Zusatzinfo 48 b/w and 8 col. ill.
Verlagsort Berlin/Boston
Sprache englisch
Maße 170 x 240 mm
Gewicht 505 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Technik
Schlagworte Anatomy & Physiology (see also Life Sciences • Applied • Applied mathematics • Complex Analysis • Developmental Biology • ENTSTEHUNGWERKE • Goethe • Human Anatomy & Physiology • Human Anatomy & Physiology) • Infinitesimalrechnung • Life Sciences • Mathematical & Computational • Mathematics • Mathematik • Nonlinear and Complex Systems • Physics • Science • System Theory • Technik
ISBN-10 3-11-053411-8 / 3110534118
ISBN-13 978-3-11-053411-5 / 9783110534115
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99