Knowledge-Driven Board-Level Functional Fault Diagnosis (eBook)

eBook Download: PDF
2016 | 1st ed. 2017
XIII, 147 Seiten
Springer International Publishing (Verlag)
978-3-319-40210-9 (ISBN)

Lese- und Medienproben

Knowledge-Driven Board-Level Functional Fault Diagnosis - Fangming Ye, Zhaobo Zhang, Krishnendu Chakrabarty, Xinli Gu
Systemvoraussetzungen
93,08 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides a comprehensive set of characterization, prediction, optimization, evaluation, and evolution techniques for a diagnosis system for fault isolation in large electronic systems. Readers with a background in electronics design or system engineering can use this book as a reference to derive insightful knowledge from data analysis and use this knowledge as guidance for designing reasoning-based diagnosis systems. Moreover, readers with a background in statistics or data analytics can use this book as a practical case study for adapting data mining and machine learning techniques to electronic system design and diagnosis. This book identifies the key challenges in reasoning-based, board-level diagnosis system design and presents the solutions and corresponding results that have emerged from leading-edge research in this domain. It covers topics ranging from highly accurate fault isolation, adaptive fault isolation, diagnosis-system robustness assessment, to system performance analysis and evaluation, knowledge discovery and knowledge transfer. With its emphasis on the above topics, the book provides an in-depth and broad view of reasoning-based fault diagnosis system design.

•Explains and applies optimized techniques from the machine-learning      domain to solve the fault diagnosis problem in the realm of electronic system design and manufacturing;
•Demonstrates techniques based on industrial data and feedback from an actual manufacturing line;
•Discusses practical problems, including diagnosis accuracy, diagnosis time cost, evaluation of diagnosis system, handling of missing syndromes in diagnosis, and need for fast diagnosis-system development.



Fangming Ye is a Staff Engineer at Huawei Technologies, with particular research interests in machine learning, data mining, resilient system design, and diagnosis system for board-level faults.

Zhaobo Zhang is a Staff Engineer at Huawei Technologies, specializing in Data analysis and machine learning, Network reliability, Application design, Flow standardization, diagnosis automation, and memory test.

Krishnendu Chakrabarty is the William H. Younger Distinguished Professor of Engineering in the Department of Electrical and Computer Engineering and Professor of Computer Science at Duke University. He is a recipient of the National Science Foundation Early Faculty (CAREER) award, the Office of Naval Research Young Investigator award, the Humboldt Research Award from the Alexander von Humboldt Foundation, Germany, the IEEE Transactions on CAD Donald O. Pederson Best Paper award (2015), and 11 best paper awards at major IEEE conferences. He is also a recipient of the IEEE Computer Society Technical Achievement Award (2015) and the Distinguished Alumnus Award from the Indian Institute of Technology, Kharagpur (2014). Prof. Chakrabarty is a Hans Fischer Senior Fellow at the Institute for Advanced Studies, Technical University of Munich, Germany.

Prof. Chakrabarty's current research projects include: testing and design-for-testability of integrated circuits and system; digital microfluidics, biochips, and cyberphysical systems; optimization of enterprise systems and smart manufacturing. He is a Fellow of ACM, a Fellow of IEEE, and a Golden Core Member of the IEEE Computer Society. Prof. Chakrabarty served as the Editor-in-Chief of IEEE Design & Test of Computers during 2010-2012 and ACM Journal on Emerging Technologies in Computing Systems during 2010-2015. Currently he serves as the Editor-in-Chief of IEEE Transactions on VLSI Systems

Xinli Gu is a Senior Director at Huawei Technologies, where he leads design solution for network product quality and reliability. He also had 12-year experiences with Cisco Systems, responsible for product testability and manufacturing quality at corporate level. 

Fangming Ye is a Staff Engineer at Huawei Technologies, with particular research interests in machine learning, data mining, resilient system design, and diagnosis system for board-level faults. Zhaobo Zhang is a Staff Engineer at Huawei Technologies, specializing in Data analysis and machine learning, Network reliability, Application design, Flow standardization, diagnosis automation, and memory test. Krishnendu Chakrabarty is the William H. Younger Distinguished Professor of Engineering in the Department of Electrical and Computer Engineering and Professor of Computer Science at Duke University. He is a recipient of the National Science Foundation Early Faculty (CAREER) award, the Office of Naval Research Young Investigator award, the Humboldt Research Award from the Alexander von Humboldt Foundation, Germany, the IEEE Transactions on CAD Donald O. Pederson Best Paper award (2015), and 11 best paper awards at major IEEE conferences. He is also a recipient of the IEEE Computer Society Technical Achievement Award (2015) and the Distinguished Alumnus Award from the Indian Institute of Technology, Kharagpur (2014). Prof. Chakrabarty is a Hans Fischer Senior Fellow at the Institute for Advanced Studies, Technical University of Munich, Germany.Prof. Chakrabarty’s current research projects include: testing and design-for-testability of integrated circuits and system; digital microfluidics, biochips, and cyberphysical systems; optimization of enterprise systems and smart manufacturing. He is a Fellow of ACM, a Fellow of IEEE, and a Golden Core Member of the IEEE Computer Society. Prof. Chakrabarty served as the Editor-in-Chief of IEEE Design & Test of Computers during 2010-2012 and ACM Journal on Emerging Technologies in Computing Systems during 2010-2015. Currently he serves as the Editor-in-Chief of IEEE Transactions on VLSI Systems.  Xinli Gu is a Senior Director at Huawei Technologies, where he leads design solution for network product quality and reliability. He also had 12-year experiences with Cisco Systems, responsible for product testability and manufacturing quality at corporate level. 

Introduction.- Diagnosis System Design for Higher Accuracy.- Adaptive Diagnosis Process.- Handling Missing Syndromes.- Information-Theoretic Evaluation of Diagnosis System.- Knowledge Discover and Knowledge Transfer.- Conclusion.

Erscheint lt. Verlag 19.8.2016
Zusatzinfo XIII, 147 p. 75 illus., 65 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Technik Elektrotechnik / Energietechnik
Schlagworte Data-Driven Design of Fault Diagnosis • Design, test, and repair of 3D-Integrated Circuits • Functional Fault Diagnosis • Intelligent Fault Diagnosis • Resilient system design
ISBN-10 3-319-40210-2 / 3319402102
ISBN-13 978-3-319-40210-9 / 9783319402109
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Grundkurs für Ausbildung und Praxis

von Ralf Adams

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
29,99
Das umfassende Handbuch

von Wolfram Langer

eBook Download (2023)
Rheinwerk Computing (Verlag)
34,93
Das umfassende Lehrbuch

von Michael Kofler

eBook Download (2024)
Rheinwerk Computing (Verlag)
34,93