Mechanics of Composite and Multi-functional Materials, Volume 7 (eBook)

Proceedings of the 2015 Annual Conference on Experimental and Applied Mechanics
eBook Download: PDF
2015 | 1st ed. 2016
X, 468 Seiten
Springer International Publishing (Verlag)
978-3-319-21762-8 (ISBN)

Lese- und Medienproben

Mechanics of Composite and Multi-functional Materials, Volume 7 -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Experimental Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 7 of the Proceedings of the 2015SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the seventh volume of nine from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including:

Multifunctional Materials

Hybrid Materials

Novel Composites

Nano- and Particle-Reinforced Composites

Additive Manufacturing of Composites

Digital Imaging of Composites

Damage Detection

Non-Destructive Evaluation

Fatigue and Fracture of Composites

Manufacturing and Joining of Composites

Advanced Composites Applications

Preface 6
Contents 8
Chapter 1: Mechanics of Multifunctional Wings with Solar Cells for Robotic Birds 12
1.1 Introduction 12
1.2 Wing Designs 13
1.3 Measurement of Lift and Residual Thrust Forces 15
1.4 Measurement of Deformation and Strain on Wing Surface 16
1.5 Sensing Using Solar Cells 18
1.6 Conclusions 19
References 20
Chapter 2: Optimization of Magnetic and Electrical Properties of New Aluminium Matrix Composite Reinforced with Magnetic Nano ... 22
2.1 Introduction 22
2.2 Experimental Conditions 23
2.3 Results and Discussion 23
2.4 Conclusions 29
References 29
Chapter 3: Manufacturing and Characterization of Anisotropic Membranes for Micro Air Vehicles 30
3.1 Introduction 30
3.2 Numerical Methods 31
3.3 Direct Analysis 32
3.4 Experimental Data Re-sampling 32
3.5 Validation of the Hydrostatic Pressure Test Model 33
3.6 Non-isotropic Survey 34
3.7 Manufacturing Method 34
3.8 Testing Method 35
3.9 Mechanical Properties Characterization 36
3.10 Numerical Model 37
3.11 Conclusions 38
References 39
Chapter 4: Compliant Artificial Skins to Enable Robotic Sensing and Training by Touch 41
4.1 Introduction 41
4.2 Experimental Procedure 42
4.2.1 Sample Fabrication 42
4.2.2 Data Acquisition and Visualization 42
4.2.3 Force Sensing 43
4.2.4 3D Digital Image Correlation Characterization 44
4.2.5 DIC Measurements 45
4.3 Experimental Results and Discussion 45
4.3.1 3D DIC Surface Measurements 45
4.3.2 Strain Response of Skin 46
4.3.3 Comparison of Skin Response and 3D DIC Measurements 48
4.3.4 Sensing Braille with a Robot Arm 48
4.4 Conclusions 49
References 49
Chapter 5: Electrical Impedance Spectroscopy for Structural Health Monitoring 51
5.1 Introduction 51
5.2 Motivation 52
5.3 Experimental Procedure 52
5.4 Results and Discussion 54
5.5 Conclusions 57
References 58
Chapter 6: Soliton-based Sensor/Actuator for Delamination and Weak Bond Detection in Laminated Composites 59
6.1 Introduction 59
6.2 Experiment Setup 60
6.3 Numerical Approach 60
6.4 Results and Discussion 61
6.5 Conclusions 62
References 63
Chapter 7: In Pursuit of Bio-inspired Triboluminescent Multifunctional Compositesƒ 64
7.1 Introduction 64
7.2 Direct Dispersion of Zns:Mn Crystals in Cementitious Composite 65
7.2.1 Experimental 65
7.2.1.1 Sample Preparation 65
7.2.1.2 Mechanical Tests 66
7.2.2 Results and Discussion 66
7.3 Bio-inspired In-Situ Triboluminescent Optical Fiber (ITOF) Sensor 66
7.4 Civil Infrastructure with In-Situ `Pain´ Sensing Capability 67
7.4.1 Real-Time Failure Monitoring in Mortar Beams 68
7.4.1.1 Experimental 68
7.4.1.2 Result and Discussion 69
7.4.2 Real-Time Damage Monitoring in Reinforced Concrete Beams 70
7.4.2.1 Experimental 70
7.4.2.2 Result and Discussion 70
7.5 Fiber Reinforced Composites with In-Situ Damage Monitoring Capability 71
7.5.1 Experimental 71
7.5.1.1 ITOF-CFRP Panel Fabrication and Low Velocity Impact Test 71
7.5.2 Results and Discussion 72
7.6 Conclusion 73
References 73
Chapter 8: Passive-Only Defect Detection and Imaging in Composites Using Diffuse Fields 75
8.1 Introduction 75
8.2 Background 76
8.2.1 Correlation Function in Diffuse Fields 76
8.2.2 Matched-Field Processing 76
8.2.3 Dominant Source Null Operation 77
8.3 Experimental Setup 77
8.4 Experimental Results 78
8.5 Discussion and Conclusions 78
References 80
Chapter 9: Buckypaper-Cored Novel Photovoltaic Sensors for In-Situ Structural Health Monitoring of Composite Materials Using H... 81
9.1 Introduction 81
9.2 Materials and Methods 83
9.3 Results and Discussion 84
9.4 Conclusion 86
References 86
Chapter 10: Viscoelasticity of Glass-Forming Materials: What About Inorganic Sealing Glasses? 88
10.1 Introduction 88
10.2 Potential Energy Clock (PEC) Model 88
10.3 Simplified Potential Energy Clock (SPEC) Model 89
10.4 Material Characterization and SPEC Model Calibration 91
10.5 Inorganic Glasses 92
10.6 Summary 94
References 95
Chapter 11: Unified Creep Plasticity Damage (UCPD) Model for Rigid Polyurethane Foams 96
11.1 Introduction 96
11.2 Experimental Observations 96
11.3 Unified Creep Plasticity Damage (UCPD) Model 98
11.4 Summary 104
References 104
Chapter 12: Mechanical Behavior Characterization of Polyurethane Used in Bend Stiffener 105
12.1 Introduction 105
12.2 Materials and Experimental Procedure 106
12.2.1 Theoretical Background 106
12.2.2 Alexander Model 107
12.2.3 Yamashita-Kawabata Model 107
12.2.4 Polynomial Model 108
12.2.5 Hyperviscoelasticity 108
12.3 Results and Discussion 109
12.3.1 FTIR Analysis 109
12.3.2 Tensile Test 110
12.3.3 Stress Relaxation Test 111
12.4 Conclusions 112
References 112
Chapter 13: Effect of Pressure on Damping Properties of Granular Polymeric Materials 114
13.1 Introduction 114
13.2 Materials and Methods 115
13.2.1 Shear Relaxation Measurements 115
13.2.2 Measuring Principle 116
13.3 Results and Discussion 116
13.4 Damping Elements Based on Dissipative Granular Materials 118
13.5 Conclusions 119
References 120
Chapter 14: Wideband Material Characterization of Viscoelastic Materials 121
14.1 Introduction 121
14.2 Experimental Method and Data Analysis 122
14.3 Experimental Results 125
14.4 Conclusions 127
References 127
Chapter 15: On the Mechanical Response of Polymer Fiber Composites Reinforced with Nanoparticles 128
15.1 Introduction 128
15.2 Sample Preparation and Test Method 129
15.2.1 Material Used and Sample Preparation 129
15.2.2 Experiment Set-Up 129
15.3 Results and Discussion 130
15.4 Summary 132
References 132
Chapter 16: Design of Al-Nb2Al Composites Through Powder Metallurgy 134
16.1 Introduction 134
16.2 Experimental Conditions 135
16.3 Results and Discussions 135
16.4 Conclusions 141
References 141
Chapter 17: Influence of Heat Treatments on Microstructure and Mechanical Behaviour of Compressible Al Matrix, Low Density Com... 143
17.1 Introduction 143
17.2 Experimental Procedures 144
17.3 Results and Discussions 145
17.3.1 General Results: Typical Composite Product 145
17.3.2 Effect of Heat Treatment on the Composite Microstructure 146
17.3.3 Effect of Heat Treatment on Hardness and Mechanical Behaviour Under Compression 147
17.4 Conclusions 149
References 150
Chapter 18: Large Deformation of Particle-Filled Rubber Composites 151
18.1 Introduction 151
18.2 Materials and Specimen Preparations 152
18.3 Measured Stress and Deformation 153
18.4 Finite Element Simulations 154
18.5 Conclusions 155
References 155
Chapter 19: Advanced Structured Composites as Novel Phononic Crystals and Acoustic Metamaterials 156
19.1 Introduction 156
19.2 Wave Propagation Through Periodic Structures 157
19.3 Finite Element Modeling 157
19.4 Fabrication of Lattice-Resonator Structures 158
19.5 Square Lattice Structures 158
19.5.1 1D Square Lattice-Resonator Chains 159
19.6 Auxetic Lattice Structures 160
19.6.1 1D Auxetic Lattice-Resonator Chains 161
19.7 Conclusions 163
References 163
Chapter 20: Low-Cost Production of Epoxy Matrix Composites Reinforced with Scarp Rubber, Boron, Glass Bubbles and Alumina 164
20.1 Introduction 164
20.2 Experimental Conditions 165
20.2.1 Materials Processing 165
20.2.2 Mechanical Tests and Microstructural Analysis 165
20.2.3 Measurements of the Density of the Specimens 166
20.2.4 Measurements of Dielectric Properties 166
20.2.5 Nanoindentation: Creep and Wear Tests 166
20.3 Results and Discussions 166
20.3.1 Microstructure and Fracture Surfaces of the Compositions 166
20.3.2 Dielectric Response of the Composite Structure 167
20.3.3 Creep Testing by Nanoindentation 167
20.3.4 Wear Testing by Nanoindentation 171
20.4 Conclusions 172
References 172
Chapter 21: Prediction of Flexural Properties of Coir Polyester Composites by ANNƒ 174
21.1 Introduction 174
21.2 Materials and Methods 176
21.2.1 Materials 176
21.2.2 Specimen Casting 176
21.2.3 Flexure Test 176
21.3 Results and Discussions 176
21.4 Conclusion 178
References 180
Chapter 22: Filler-Reinforced Poly(Glycolic Acid) for Degradable Frac Balls Under High-Pressure Operation 182
22.1 Introduction 182
22.2 Experimental 185
22.2.1 Materials 185
22.2.2 Preparation of PGA Composites 185
22.2.3 Measurements 185
22.3 Results and Discussion 186
22.4 Conclusions 189
References 189
Chapter 23: Characteristics of Elastomeric Composites Reinforced with Carbon Black and Epoxy 191
23.1 Introduction 191
23.2 Experimental Conditions 192
23.3 Results and Discussion 193
23.3.1 Vulcanization Characteristics 193
23.3.2 Mechanical Properties 194
23.3.3 Hardness-Shore A Test Evaluation 195
23.3.4 Dynamic Mechanical Thermal Analysis 195
23.3.5 Microindentation Analysis 196
23.3.6 Nanoindentation Analysis 197
23.3.7 Damage and Fracture Surface Analysis by Means of Scanning Electron Microscopy 199
23.4 Conclusion 199
References 200
Chapter 24: Mechanical Properties of Extensively Recycled High Density Polyethylene 202
24.1 Introduction 202
24.2 Materials and Methods 203
24.2.1 Material 203
24.2.2 Simulation of Mechanical Recycling 203
24.2.3 Nanoindentation 203
24.2.4 Shear Creep Compliance 203
24.2.5 Differential Scanning Calorimetry 204
24.3 Results and Discussion 204
24.3.1 Hardness and Modulus 204
24.3.2 Shear Creep Compliance 205
24.3.3 Differential Scanning Calorimetry 206
24.4 Conclusions 207
References 207
Chapter 25: Mechanical Characterization and Preliminary Modeling of PEEK 208
25.1 Introduction 208
25.2 Materials and Experimental Methods 209
25.2.1 Wave Moduli Measurement 209
25.2.2 Equilibrium Stress Measurement 210
25.3 Experimental Results and Discussion 210
25.4 Modeling 211
25.5 Anisotropic Elastic Response 212
25.6 Partition of the Cauchy Stress 213
25.7 Modeling Back Stress 215
25.8 Modeling Flow Rule 216
25.9 Summary 217
References 217
Chapter 26: Characterization of the Nonlinear Elastic Behavior of Chinchilla Tympanic Membrane Using Micro-fringe Projection 218
26.1 Introduction 218
26.2 Method 218
26.2.1 Micro-fringe Projection 218
26.2.2 Sample Preparation 219
26.2.3 Finite Element Simulations 220
26.3 Results and Discussion 221
26.4 Conclusion 223
References 223
Chapter 27: Compression of Silicone Foams 224
27.1 Introduction 224
27.2 Material and Specimen 224
27.3 Experimental Setup 225
27.4 Experiment 225
27.5 Conclusion 229
Chapter 28: Voltage Control of Single Magnetic Domain Nanoscale Heterostructure, Analysis and Experiments 230
28.1 Introduction 230
28.2 Theory 231
28.3 Simulation and Results 231
28.4 Conclusion 233
References 233
Chapter 29: Active Damping in Polymer-Based Nanocomposites 234
29.1 Introduction 234
29.2 Experimental 235
29.2.1 Processing 235
29.2.2 Mechanical Characterization 235
29.3 Results and Discussion 236
29.4 Conclusions 238
References 238
Chapter 30: MWCNT and CNF Cementitious Nanocomposites for Enhanced Strength and Toughness 239
30.1 Introduction 239
30.2 Experimental Program 240
30.2.1 Materials and Specimen Preparation 240
30.2.2 Mechanical and Fracture Testing 240
30.3 Results and Discussion 241
30.4 Conclusions 243
References 244
Chapter 31: Small Scale Thermomechanics in Si with an Account of Surface Stress Measurements 245
References 248
Chapter 32: Magnetorheological Elastomers: Experimental and Modeling Aspects 249
32.1 Introduction 249
32.2 Study of Interfacial Adhesion 250
32.3 Magneto-Mechanical Experimental Characterization 252
32.4 Constitutive Modeling 253
32.5 Conclusion 254
References 254
Chapter 33: Failure Criteria of Composite Materials Under Static and Dynamic Loading 255
33.1 Introduction 255
33.2 Characterization of Composite Lamina 256
33.3 Strain-Rate-Dependent Failure Criteria 256
33.4 Strain-Rate-Dependent Yield Criteria 260
33.5 Progressive Damage of Composite Laminates 262
33.5.1 Yielding of Lamina 262
33.5.2 Failure Initiation and Characteristic Damage State 262
33.6 Summary and Conclusions 265
References 265
Chapter 34: A Theory of Multi-Constituent Finitely-Deforming Composite Materials Subject to Thermochemical Changes with Damage 266
34.1 Introduction 266
34.2 Chemothermal Decomposition 266
34.3 Maximization of Entropy Production 267
34.4 Entropy Production Function 268
34.5 Definition of Strain Energy and Application to a Material with Evolving Damage 269
References 272
Chapter 35: Pressurized In-Situ Dynamic Mechanical Thermal Analysis Method for Oilfield Polymers and Composites 273
35.1 Introduction 273
35.2 Experimental 275
35.2.1 HPHT In-Situ Thermomechanical Testing System 275
35.2.2 Test Materials 276
35.2.3 In-Situ wet Tg Determination 277
35.2.4 Hydrostatic Pressure-Dependent Tg Determination 279
35.3 Results and Discussion 280
35.3.1 Results of In-Situ Wet Tg Determination 280
35.3.2 Results of Hydrostatic Pressure-Dependent Tg Determination 283
35.4 Conclusions 285
References 285
Chapter 36: HPHT Hot-Wet Resistance of Reinforcement Fibers and Fiber-Resin Interface of Advanced Composite Materials 286
36.1 Introduction 286
36.2 Experimental 288
36.2.1 Reinforcement Fibers and Composite Laminates 288
36.2.2 HPHT Hot-Wet Environmental Simulation 289
36.2.3 Hot-Wet Evaluation of Woven Fabric Tape 289
36.2.4 Composite Mechanical Tests 290
36.2.5 Microstructure and Interface Examination 290
36.2.6 Thermal Mechanical Analysis 291
36.2.7 Analytical Methods for Fiber Degradation Mechanism Study 291
36.3 Results and Discussion 291
36.3.1 Hot-Wet Resistance of Reinforcement Fibers 291
36.3.2 Fiber and Fiber/Resin Interface Degradation in Composites 298
36.3.3 Fiber and Fiber/Resin Interfacial Effects on Mechanical Properties of Composites 303
36.3.3.1 Tensile Strength of Selected Continuous Fiber-Reinforced Composites 303
36.3.3.2 Compression Strength of Selected Continuous Fiber-Reinforced Composites 305
36.3.3.3 Tensile Properties of Short Fiber-Filled PEEK Composite Molding Compounds 308
Room-Temperature Tensile Properties 308
Elevated-Temperature Tensile Properties 310
36.4 Conclusions 313
References 314
Chapter 37: Laboratory Testing on Composites to Replicate Oil and Gas Service 316
37.1 Introduction 316
37.2 Experimental Work 316
37.3 Conclusion 321
References 322
Chapter 38: Measurement of Thermal Deformation of CFRP Under Rapid Heating 323
38.1 Introduction 323
38.2 Infrared Lamp Rapid Heating Equipment 324
38.3 Digital Image Correlation Method 325
38.4 Preliminary Experiment 328
38.5 Conclusion 329
References 329
Chapter 39: Performance of Patch and Full-Encirclement Bonded Composite Repairsƒ 331
39.1 Introduction 331
39.2 Experimental 332
39.2.1 Specimens Design and Manufacture 332
39.2.2 Pressure Fatigue Testing 332
39.3 Finite Elemental Analysis 332
39.4 Results and Discussion 334
39.4.1 Finite Element Results 334
39.4.2 Pressure Fatigue Testing 336
39.5 Conclusions 337
References 337
Chapter 40: Meso-Scale Deformation Behavior of Polymer Bonded Energetic Material Under Quasi-Static Compression 338
40.1 Introduction 338
40.2 Materials and Experimental Procedure 339
40.2.1 Preparation of the Material 339
40.2.2 Experimental Procedure 339
40.3 Results and Discussion 340
40.3.1 Strain Localization in PBS-1, PBS-2 and PBS-3 340
40.4 Summary 342
References 343
Chapter 41: Subsidence Modeling and Analysis for Sand Shear Strength Parameter Testing 344
41.1 Introduction 344
41.2 Soil Strength Testing Using Controlled Surface Subsidence 345
41.3 Analysis of Soil Internal Friction Angle and Angle of Break 347
41.4 Soil Surface Deformation Measurement Technique 348
41.5 Physical Model for Subsidence Simulation 350
41.6 Examples of Subsidence Simulation Results and Visualizations 351
41.7 Discussion and Remarks 353
References 355
Chapter 42: Determining the Shear Relaxation Modulus and Constitutive Models for Polyurea and Polyurea-Based Composite Materia... 356
42.1 Introduction 356
42.2 Material Fabrication 357
42.3 Dynamic Mechanical Analysis and Master Curves Development 357
42.4 Master Curves Quality Assessments 358
42.5 Relaxation Modulus and Prony Series 359
42.6 Discussion 359
References 360
Chapter 43: Long Term Stability of UHMWPE Fibers 361
43.1 Introduction 361
43.2 Experimental 362
43.3 Results and Discussion 363
43.4 Conclusions 366
References 367
Chapter 44: Age Deformation After Stamping of Carbon Fiber Reinforced Polycarbonate Laminates 368
44.1 Introduction 368
44.2 Viscoelastic Model for Spring Back and Age Deformation 368
44.3 Experiments and Results 370
44.3.1 Preparation of CF/PC Laminates 370
44.3.2 Determination of Stamping Temperature 370
44.3.3 Stamping of CF/PC Laminates 371
44.3.4 Observation of Damage of Stamped CF/PC Laminates 371
44.3.5 Spring Back and Age Deformation 372
44.3.6 Long-Term Prediction of Age Deformation 373
44.4 Conclusion 376
References 376
Chapter 45: Incremental Formulation for Coupled Viscoelasticity and Hydrolock Effect in Softwood 377
45.1 Introduction 377
45.2 Experimental Evidence of the Hydrolock Effect 378
45.3 Analytical Model 379
45.3.1 Thermodynamic Framework 379
45.3.2 Hydrolock Strain Formulation in the Drying Phase 380
45.3.3 Hydrolock Strain Formulation in the Wetting Phase 380
45.3.4 Viscoelastic Strain 381
45.4 Incremental Model 381
45.4.1 Hydric Strain Increment 382
45.4.2 Hydrolock Strain Increment 382
45.4.2.1 Drying Phase 382
45.4.2.2 Wetting Phase 382
45.4.3 Viscoelastic Strain Increment 382
45.4.4 Global Incremental Formulation 384
45.5 Numerical Validation 384
45.6 Conclusion 385
References 385
Chapter 46: Accelerated Creep Testing of CFRP with the Stepped Isostress Method 386
46.1 Introduction 386
46.2 Test Method 387
46.2.1 Materials and Specimens 387
46.2.2 Preliminary Tensile Tests 387
46.2.3 SSM Creep Tests 388
46.3 Results and Discussion 388
46.3.1 Procedure for Data Analysis 388
46.3.2 Creep Master Curves 389
46.3.3 Creep Rupture 391
46.4 Summary 392
References 392
Chapter 47: Coupon-Based Qualification for the Fatigue of Composite Repairs of Pressure Equipment 393
47.1 Introduction 393
47.2 Experimental Methods 394
47.2.1 Specimen Manufacture 394
47.2.2 Fatigue Testing 394
47.3 Results and Discussion 394
47.3.1 Specimen Calibration 394
47.3.2 Fatigue Testing 395
47.4 Conclusions 397
References 397
Chapter 48: Effect of a Composite Coupler on Automotive Windshield Wiper System Chatter 398
48.1 Introduction 398
48.2 Design of the Composite Coupler 400
48.3 Validation Test Results and Discussions 402
48.3.1 Durability Test 402
48.3.2 Chatter Test 403
48.4 Conclusions 407
References 407
Chapter 49: Through Process Modeling Approach: Effect of Microstructure on Mechanical Properties of Fiber Reinforced Composites 408
49.1 Introduction and Motivations 408
49.2 Numerical Modeling 410
49.2.1 Fiber Reinforced Plastic Flow Modeling 410
49.2.2 Fiber Orientation Distribution (FOD) Modeling 411
49.2.3 Estimation of Elastic Properties 412
49.3 Results and Discussion 412
49.4 Conclusion 416
References 416
Chapter 50: Molding Strain of Glass Fibers of Model GFRP 418
50.1 Introduction 418
50.2 Material and Experimental Method 418
50.2.1 Model Specimens 418
50.2.2 Measurement of Strain by FBG Sensors 419
50.3 Fem Analysis 420
50.3.1 Constitutive Equation 420
50.3.2 Material Characteristics of Resin 421
50.3.3 FEM Model 422
50.4 Results and Discussion 423
50.5 Conclusion 424
References 424
Chapter 51: Effect of Molding Conditions on Process-Induced Deformation of Asymmetric FRP Laminates 425
51.1 Introduction 425
51.2 Material and Experimental Method 426
51.2.1 Materials 426
51.2.2 Measurement of Degree of Cure 426
51.2.3 Measuring Warping Deflection After Demolding 426
51.3 Experimental Results and Discussion 427
51.3.1 Effect of Temperature Pattern on Process-Induced Deformation 427
51.3.2 Effect of Constraint by a Molding Die 430
51.4 Conclusion 430
References 430
Chapter 52: Simulation of High Rate Failure Mechanisms in Composites During Quasi-static Testing 431
52.1 Introduction 431
52.2 Material 432
52.3 Laterally Constrained Compression Test 432
52.3.1 Sample Preparation 433
52.3.2 2D Woven Data 433
52.3.3 Comparison to Ballistic Testing 435
52.4 Conclusions 435
References 436
Chapter 53: Meso-scale Deformation Mechanisms of Polymer Bonded Energetic Materials Under Dynamic Loading 437
53.1 Introduction 437
53.2 Materials and Experimental Procedure 438
53.2.1 Preparation of the Material 438
53.2.2 Experimental Methods 438
53.3 Results and Discussion 440
53.4 Summary 441
References 441
Chapter 54: High Strain Rate Tensile Behavior of Fiber Metal Laminates 443
54.1 Introduction 443
54.2 Experimental Details 444
54.2.1 Specimen Configuration 444
54.2.2 Quasi-static Loading 444
54.2.3 High Strain Rate Loading 445
54.2.4 High Speed Real Time Digital Imaging 446
54.3 Results 446
54.4 Conclusions 446
References 447
Chapter 55: Compressive Response of Cellular Core Filled with Micro-Sphere Embedded Aluminum 448
55.1 Introduction 448
55.2 Experimental Details 448
55.2.1 Material Description 448
55.3 Results and Discussion 450
55.3.1 Quasi-Static Compressive Stress-Strain Behaviour 450
55.3.2 Dynamic Compressive Stress-Strain Behavior 451
55.4 Conclusion 452
References 453
ERRATUM TO 454

Erscheint lt. Verlag 30.10.2015
Reihe/Serie Conference Proceedings of the Society for Experimental Mechanics Series
Conference Proceedings of the Society for Experimental Mechanics Series
Zusatzinfo X, 468 p. 423 illus., 316 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik Maschinenbau
Schlagworte composite materials • Conf Pro. of the Society for Experimental Mechanics • Mechanics of Composite Materials • Mechanics of Multifunctional Materials • multifunctional materials
ISBN-10 3-319-21762-3 / 3319217623
ISBN-13 978-3-319-21762-8 / 9783319217628
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 33,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich