The Physics of Thin Film Optical Spectra (eBook)

An Introduction

(Autor)

eBook Download: PDF
2015 | 2. Auflage
XXVI, 359 Seiten
Springer-Verlag
978-3-319-21602-7 (ISBN)

Lese- und Medienproben

The Physics of Thin Film Optical Spectra -  Olaf Stenzel
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures. The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.

Foreword 8
Preface to the Second Edition 10
Preface to the First Edition 13
Contents 15
Symbols and Abbreviations 20
1 Introduction 24
Abstract 24
1.1 General Remarks 24
1.2 To the Content of the Book 25
1.3 The General Problem 27
1.4 One Remark Concerning Conventions 29
Part I Classical Description of the Interactionof Light with Matter 31
2 The Linear Dielectric Susceptibility 32
Abstract 32
2.1 Maxwell's Equations 32
2.2 The Linear Dielectric Susceptibility 34
2.3 Linear Optical Constants 36
2.4 Some General Remarks 39
2.5 Example: Orientation Polarization and Debye's Equations 40
2.6 Energy Dissipation 44
3 The Classical Treatment of Free and Bound Charge Carriers 46
Abstract 46
3.1 Free Charge Carriers 46
3.1.1 Derivation of Drude's Formula I 46
3.1.2 Derivation of Drude's Formula II 49
3.2 The Oscillator Model for Bound Charge Carriers 52
3.2.1 General Idea 52
3.2.2 Microscopic Fields 54
3.2.3 The Clausius-Mossotti and Lorentz-Lorenz-Equations 56
3.3 Probing Matter in Different Spectral Regions 60
3.4 Spatial Dispersion 60
3.5 Attempt of an Illustrative Approach 63
4 Derivations from the Oscillator Model 67
Abstract 67
4.1 Natural Linewidth 67
4.2 Homogeneous and Inhomogeneous Line Broadening Mechanisms 69
4.2.1 General 69
4.2.2 Collision Broadening 70
4.2.3 Doppler Broadening 70
4.2.4 Brendel Model 71
4.3 Oscillators with More Than One Degree of Freedom 72
4.4 Sellmeier's and Cauchy's Formulae 74
4.5 Optical Properties of Mixtures 77
4.5.1 Motivation and Example 77
4.5.2 The Maxwell Garnett, Bruggeman and Lorentz-Lorenz Mixing Models 81
4.5.3 Metal-Dielectric Mixtures and Remarks on Surface Plasmons 84
4.5.4 Dielectric Mixtures and Wiener Bounds 87
4.5.5 The Effect of Pores 92
4.5.6 The Refractive Index of Amorphous Silicon in Terms of the Lorentz-Lorenz Approach: A Model Calculation 98
5 The Kramers-Kronig Relations 104
Abstract 104
5.1 Derivation of the Kramers-Kronig Relations 104
5.2 Some Conclusions 108
5.3 Resume from Chaps. 2--4 and this Chapter 110
5.3.1 Overview on Main Results 110
5.3.2 Problems 111
Part II Interface Reflection and InterferencePhenomena in Thin Film Systems 113
6 Planar Interfaces 114
Abstract 114
6.1 Transmission, Reflection, Absorption and Scattering 114
6.1.1 Definitions 114
6.1.2 Experimental Aspects 116
6.1.3 Remarks on the Absorbance Concept 119
6.2 The Effect of Planar Interfaces: Fresnel's Formulae 120
6.3 Total Reflection of Light 129
6.3.1 Conditions of Total Reflection 129
6.3.2 Discussion 130
6.3.3 Attenuated Total Reflection ATR 131
6.4 Metal Surfaces 133
6.4.1 Metallic Reflection 133
6.4.2 Propagating Surface Plasmon Polaritons 136
6.5 Anisotropic Materials 142
6.5.1 Interface Reflection Between an Isotropic and an Anisotropic Material 142
6.5.2 Giant Birefringent Optics 145
7 Thick Slabs and Thin Films 147
Abstract 147
7.1 Transmittance and Reflectance of a Thick Slab 147
7.2 Thick Slabs and Thin Films 152
7.3 Spectra of Thin Films 155
7.4 Special Cases 158
7.4.1 Vanishing Damping 158
7.4.2 Halfwave Layers 160
7.4.3 Quarterwave Layers 161
7.4.4 Free-Standing Films 163
7.4.5 A Single Thin Film on a Thick Substrate 165
7.4.6 A Few More Words on Reverse Search Procedures 169
8 Gradient Index Films and Multilayers 178
Abstract 178
8.1 Gradient Index Films 178
8.1.1 General Assumptions 178
8.1.2 s-Polarization 181
8.1.3 p-Polarization 183
8.1.4 Calculation of Transmittance and Reflectance 184
8.2 Multilayer Systems 190
8.2.1 The Characteristic Matrix 190
8.2.2 Characteristic Matrix of a Single Homogeneous Film 192
8.2.3 Characteristic Matrix of a Film Stack 192
8.2.4 Calculation of Transmittance and Reflectance 193
9 Special Geometries 196
Abstract 196
9.1 Quarterwave Stacks and Derived Systems 196
9.2 Chirped and Dispersive Mirrors 200
9.2.1 Basic Properties of Short Light Pulses: Qualitative Discussion 200
9.2.2 General Idea of Chirped Mirror Design 204
9.2.3 First and Second Order Dispersion Theory 205
9.2.4 Spectral Targets for Dispersive Mirrors and Examples 210
9.3 Structured Surfaces 215
9.4 Remarks on Resonant Grating Waveguide Structures 217
9.4.1 General Idea 217
9.4.2 Propagating Modes and Grating Period 218
9.4.3 Energy Exchange Between the Propagating Modes 220
9.4.4 Analytical Film Thickness Estimation for a GWS 221
9.4.5 Examples on GWS-Based Simple Reflector and Absorber Designs 223
9.5 Resume from Chaps. 6--8 and this Chapter 228
9.5.1 Overview on Main Results 228
9.5.2 Further Experimental Examples 230
9.5.3 Problems 235
Part III Semiclassical Description of the Interactionof Light with Matter 241
10 Einstein Coefficients 242
Abstract 242
10.1 General Remarks 242
10.2 Phenomenological Description 243
10.3 Mathematical Treatment 245
10.4 Perturbation Theory of Quantum Transitions 246
10.5 Planck's Formula 252
10.5.1 Idea 252
10.5.2 Planck Distribution 253
10.5.3 Density of States 253
10.6 Expressions for Einstein Coefficients in the Dipole Approximation 256
10.7 Lasers 260
10.7.1 Population Inversion and Light Amplification 260
10.7.2 Feedback 261
11 Semiclassical Treatment of the Dielectric Function 268
Abstract 268
11.1 First Suggestions 268
11.2 Calculation of the Dielectric Function by Means of the Density Matrix 270
11.2.1 The Interaction Picture 270
11.2.2 Introduction of the Density Matrix 271
11.2.2.1 Semiclassical Calculation of the Polarizability 277
12 Solid State Optics 283
Abstract 283
12.1 Formal Treatment of the Dielectric Function of Crystals (Direct Transitions) 283
12.2 Joint Density of States 288
12.3 Indirect Transitions 293
12.4 Amorphous Solids 296
12.4.1 General Considerations 296
12.4.1.1 Tauc-Gap and Urbach-Tail 299
12.5 Resume from Chaps. 10--11 and this Chapter 304
12.5.1 Overview on Main Results 304
12.5.2 Problems 307
Part IV Basics of Nonlinear Optics 313
13 Some Basic Effects of Nonlinear Optics 314
Abstract 314
13.1 Nonlinear Susceptibilities: Phenomenological Approach 314
13.1.1 General Idea 314
13.1.2 Formal Treatment and Simple Second Order Nonlinear Optical Effects 316
13.1.3 Some Third Order Effects 323
13.2 Calculation Scheme for Nonlinear Optical Susceptibilities 326
13.2.1 Macroscopic Susceptibilities and Microscopic Hyperpolarizabilities 326
13.2.2 Density Matrix Approach for Calculating Optical Hyperpolarizabilities 327
13.2.3 Discussion 332
13.2.3.1 Convergence 332
13.2.3.2 Selection Rules 333
13.2.3.3 Resonance Behaviour 334
13.2.3.4 Nonlinear Absorption Coefficient 335
13.3 Resume for this Chapter 336
13.3.1 Overview on Main Results 336
13.3.2 Problems 338
14 Concluding Remarks 339
Abstract 339
Too Many Equations?—A Very Final Remarkon Physicists and Mathematics 344
Bibliography 345
Index 354

Erscheint lt. Verlag 22.9.2015
Reihe/Serie Springer Series in Surface Sciences
Springer Series in Surface Sciences
Zusatzinfo XXVI, 352 p.
Verlagsort Cham
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik Maschinenbau
Schlagworte Coating characterization • Coating Design • Interface Reflection and Interference Phenomena • Reflectivity of Multilayer Films • Resonant Grating Waveguide Structures • Rugate Filters • Spectroscopy of Solid Matter • Theory of Optical Coatings
ISBN-10 3-319-21602-3 / 3319216023
ISBN-13 978-3-319-21602-7 / 9783319216027
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 8,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

eBook Download (2024)
Wiley-VCH (Verlag)
70,99