Instance-Specific Algorithm Configuration (eBook)

(Autor)

eBook Download: PDF
2014 | 2014
IX, 134 Seiten
Springer International Publishing (Verlag)
978-3-319-11230-5 (ISBN)

Lese- und Medienproben

Instance-Specific Algorithm Configuration - Yuri Malitsky
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents a modular and expandable technique in the rapidly emerging research area of automatic configuration and selection of the best algorithm for the instance at hand. The author presents the basic model behind ISAC and then details a number of modifications and practical applications. In particular, he addresses automated feature generation, offline algorithm configuration for portfolio generation, algorithm selection, adaptive solvers, online tuning, and parallelization. 

 

The author's related thesis was honorably mentioned (runner-up) for the ACP Dissertation Award in 2014, and this book includes some expanded sections and notes on recent developments. Additionally, the techniques described in this book have been successfully applied to a number of solvers competing in the SAT and MaxSAT International Competitions, winning a total of 18 gold medals between 2011 and 2014. 

 

The book will be of interest to researchers and practitioners in artificial intelligence, in particular in the area of machine learning and constraint programming.



Dr. Yuri Malitsky received his PhD from Brown University in 2012 for his work on the Instance-Specific Algorithm Configuration (ISAC) approach. He was a postdoc in the Cork Constraint Computation Centre from 2012 to 2014. He is now a postdoc at the IBM Thomas J. Watson Research Center, working on problems in machine learning, combinatorial optimization, data mining, and data analytics. 

 

Dr. Malitsky's research focuses on applying machine learning techniques to improve the performance of combinatorial optimization and constraint satisfaction solvers. In particular, his work centers around automated algorithm configuration, algorithm portfolios, algorithm scheduling, and adaptive search strategies, aiming to develop the mechanisms to determine the structures of problems and their association with the behaviors of different solvers, and to develop methodologies that automatically adapt existing tools to the instances they will be evaluated on.

Dr. Yuri Malitsky received his PhD from Brown University in 2012 for his work on the Instance-Specific Algorithm Configuration (ISAC) approach. He was a postdoc in the Cork Constraint Computation Centre from 2012 to 2014. He is now a postdoc at the IBM Thomas J. Watson Research Center, working on problems in machine learning, combinatorial optimization, data mining, and data analytics.  Dr. Malitsky's research focuses on applying machine learning techniques to improve the performance of combinatorial optimization and constraint satisfaction solvers. In particular, his work centers around automated algorithm configuration, algorithm portfolios, algorithm scheduling, and adaptive search strategies, aiming to develop the mechanisms to determine the structures of problems and their association with the behaviors of different solvers, and to develop methodologies that automatically adapt existing tools to the instances they will be evaluated on.

Introduction.- Survey of Related Work.- Architecture of Instance-Specific Algorithm Configuration Approach.- Applying ISAC to Portfolio Selection.- Generating a Portfolio of Diverse Solvers.- Handling Features.- Developing Adaptive Solvers.- Making Decisions Online.- Conclusions.

Erscheint lt. Verlag 20.11.2014
Zusatzinfo IX, 134 p. 13 illus., 11 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik
Technik
Schlagworte Adaptive Algorithms • Algorithm configuration • Automated algorithm selection • Automatic Programming • combinatorial optimization • combinatorics • Constraint Satisfaction • machine learning
ISBN-10 3-319-11230-9 / 3319112309
ISBN-13 978-3-319-11230-5 / 9783319112305
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 1,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
69,99
Der Weg zur professionellen Vektorgrafik

von Uwe Schöler

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
29,99