The second edition of The Lung: Development, Aging and the Environment provides an understanding of the multi-faceted nature of lung development, aging, and how the environment influences these processes. As an essential resource to respiratory, pulmonary, and thoracic scientists and physicians it provides an interface between the "e;normal and "e;disease cluster of chapters, allowing for a natural complement to each other. The interface between different lung diseases affecting the pediatric lung also adds a useful source for comparing how different lung diseases share key pathophysiological features. This same complementarity comes across in the logical line up of chapters dealing with the "e;normal pediatric lung. New research, including cell-based strategies for infant lung function, epigenetics, and prenatal alcohol exposure on lung development and function are some of the important additions to this edition of this reference work. - Describes the normal processes of lung development, growth and aging- Considers the effects of the environmental contaminants in the air, water, soil, and diet on lung development, growth and health- Describes genetic factors involved in susceptibility to lung disease- Covers respiratory health risk in children
Front Cover 1
The Lung 4
Copyright 5
Contents 6
Contributors 12
Introduction 16
Part I - Critical Events in Normal Development and Aging 18
Chapter 1 - Lung Progenitor Cell Specification and Morphogenesis 20
INTRODUCTION 20
ONSET OF LUNG DEVELOPMENT 20
BRANCHING MORPHOGENESIS 23
ESTABLISHMENT OF PROXIMAL-DISTAL CELL FATE AND DIFFERENTIATION 24
CONCLUSIONS 24
REFERENCES 25
Chapter 2 - Development of Airway Epithelium 28
INTRODUCTION 28
DIFFERENCES IN PHENOTYPIC EXPRESSION IN ADULTS 28
OVERALL DEVELOPMENT OF AIRWAYS 32
SUBMUCOSAL GLANDS 33
EPITHELIAL DIFFERENTIATION 34
REGULATION OF DIFFERENTIATION 41
REFERENCES 44
Chapter 3 - Development of the Innervation of the Lower Airways: Structure and Function 50
INTRODUCTION 50
ANATOMY, MORPHOLOGY, AND DISTRIBUTION IN THE PRENATAL LUNG 50
ANATOMY, MORPHOLOGY, AND DISTRIBUTION IN THE POSTNATAL LUNG 62
ONTOGENY AND REFLEX CONTROL OF AIRWAY SMOOTH MUSCLE: FUNCTIONAL CONSEQUENCES 70
MUSCARINIC RECEPTORS IN THE LUNG 72
ACKNOWLEDGMENTS 73
REFERENCES 73
Chapter 4 - The Formation of Pulmonary Alveoli 82
INTRODUCTION 82
STAGES OF LUNG DEVELOPMENT 82
PARACRINE SIGNALING TO EPITHELIAL CELLS 89
DEVELOPMENT OF THE ALVEOLAR INTERSTITIUM 90
CONCLUSIONS 95
ACKNOWLEDGEMENTS 96
REFERENCES 96
Chapter 5 - Pulmonary Vascular Development 102
INTRODUCTION 102
CELLULAR BASIS OF VESSEL MORPHOGENESIS 103
DEVELOPMENT (FORMATION AND GROWTH) OF ENDOTHELIAL CHANNELS 103
DEVELOPMENT OF VASCULAR MURAL CELLS 109
CELL–CELL SIGNALING: ENDOTHELIAL/MURAL CELL DEVELOPMENT 114
EMBRYONIC AND FETAL VASCULAR DEVELOPMENT 117
POSTNATAL VASCULAR DEVELOPMENT AND GROWTH 124
VASCULAR GROWTH AND REORGANIZATION IN THE ADULT 126
VESSELL WALL REORGANIZATION IN AGING 127
FAILURE TO DEVELOP THE NORMAL QUOTA OF VASCULAR UNITS AND A FUNCTIONALLY “NORMAL” LUNG 128
ACKNOWLEDGMENTS 129
REFERENCES 129
Chapter 6 - Developmental Physiology of the Pulmonary Circulation 138
INTRODUCTION 138
LUNG VASCULAR GROWTH 138
CONTROL OF THE DUCTUS ARTERIOSUS 146
CONCLUSIONS 149
REFERENCES 150
Chapter 7 - Development of Salt and Water Transport across Airway and Alveolar Epithelia 154
TRANSPORT PROCESSES UNDERLYING SECRETION AND ABSORPTION ACROSS PULMONARY EPITHELIA 154
CELLULAR BASIS OF SECRETION AND ABSORPTION 156
INTACT ADULT LUNG 157
CULTURES OF ADULT TYPE II CELLS 158
INTACT FETAL LUNG 158
FETAL LUNG EXPLANTS 159
CULTURES OF FETAL ALVEOLAR TYPE II CELLS 159
ADULT AIRWAY EPITHELIUM 160
FETAL AND NEWBORN AIRWAY EPITHELIUM 160
PERINATAL ABSORPTION OF LIQUID 161
CONCLUSIONS 165
REFERENCES 165
Chapter 8 - Physical, Endocrine, and Growth Factors in Lung Development 174
INTRODUCTION 174
ROLE OF PHYSICAL FACTORS IN REGULATING FETAL LUNG DEVELOPMENT 174
MECHANOTRANSDUCTION MECHANISMS 180
ROLE OF GROWTH FACTORS IN LUNG DEVELOPMENT 184
CIRCULATING FACTORS AND METABOLIC INFLUENCES ON LUNG DEVELOPMENT 186
CONCLUSION 189
REFERENCES 190
Chapter 9 - The Development of the Pulmonary Surfactant System 200
INTRODUCTION 200
ASSEMBLY AND RELEASE OF SURFACTANT 200
COMPOSITION OF PULMONARY SURFACTANT 200
FUNCTIONS OF THE SURFACTANT FILM 203
FUNCTIONS OF THE PULMONARY SURFACTANT SYSTEM 204
REGULATION OF SURFACTANT SECRETION 206
DEVELOPMENT OF THE PULMONARY SURFACTANT SYSTEM 208
SURFACTANT DEFICIENCY LEADING TO NEONATAL RESPIRATORY DISTRESS SYNDROME 213
CONCLUSIONS 217
ACKNOWLEDGEMENTS 217
REFERENCES 217
Chapter 10 - Ontogeny of the Pulmonary Immune System 228
INTRODUCTION 228
POSTNATAL MATURATION OF SYSTEMIC IMMUNITY 228
POSTNATAL MATURATION OF PULMONARY MUCOSAL IMMUNITY 232
CONCLUSIONS 236
ACKNOWLEDGMENTS 236
REFERENCES 236
Chapter 11 - Development of Antioxidant and Xenobiotic Metabolizing Enzyme Systems 240
IMPORTANCE OF ANTIOXIDANTS AND XENOBIOTIC METABOLIZING ENZYMES 240
DEVELOPMENT OF ANTIOXIDANT ENZYME SYSTEMS 240
DEVELOPMENT OF XENOBIOTIC METABOLIZING ENZYME SYSTEMS 242
CONCLUSIONS 244
REFERENCES 245
Chapter 12 - Stretch and Grow: Mechanical Forces in Compensatory Lung Growth 250
INTRODUCTION 250
TISSUE AND MECHANICAL FORCES IN LUNG DEVELOPMENT 250
MECHANICAL FORCES FOLLOWING PNEUMONECTOMY 252
POST-PNEUMONECTOMY COMPENSATORY RESPONSE 253
MANIPULATING MECHANICAL SIGNALS IN COMPENSATORY LUNG GROWTH 257
COMPENSATORY AIRWAY GROWTH, REMODELING, AND FUNCTION 259
REGULATORY PATTERNS DURING DEVELOPMENTAL AND COMPENSATORY GROWTH 261
AMPLIFYING COMPENSATORY LUNG GROWTH 262
CONCLUSIONS 262
ACKNOWLEDGMENTS 263
REFERENCES 263
Chapter 13 - Pulmonary Transition at Birth 268
INTRODUCTION 268
FETAL LUNG MATURATION, GLUCOCORTICOIDS, AND BIRTH 268
AIRWAY LIQUID CLEARANCE BEFORE BIRTH 269
LUNG LIQUID CLEARANCE AT BIRTH 270
AIRWAY LIQUID CLEARANCE AFTER BIRTH 271
THE PHYSIOLOGICAL CONSEQUENCES OF LUNG AERATION 273
CHANGES IN PULMONARY BLOOD FLOW AT BIRTH 273
DYNAMIC CHANGES IN THE DUCTUS ARTERIOSUS AT BIRTH 277
FETAL BREATHING AND THE ONSET OF CONTINUOUS BREATHING AT BIRTH 277
CONCLUSIONS 278
REFERENCES 278
Chapter 14 - Normal Aging of the Lung 282
INTRODUCTION 282
AGING, BODY MASS, AND THE LUNGS IN MAMMALS 283
LIFE SPAN CHARACTERISTICS OF THE MOUSE 284
LIFE SPAN CHARACTERISTICS OF THE RAT 289
GENERAL CHARACTERISTICS OF THE LUNGS IN AGING DOGS 297
GENERAL CHARACTERISTICS OF THE LUNGS IN AGING RHESUS MONKEY 299
OVERALL CONCLUSIONS 300
REFERENCES 300
Chapter 15 - Cell-Based Strategies for the Treatment of Injury to the Developing Lung 304
INTRODUCTION 304
ENDOGENOUS LUNG STEM/PROGENITOR CELLS 305
THERAPEUTIC POTENTIAL OF STEM CELLS FOR NEONATAL LUNG INJURY 307
FROM BENCH TO BEDSIDE: CLINICAL TRIALS IN PRETERM INFANTS WITH BPD 312
CONCLUSIONS 312
REFERENCES 312
Chapter 16 - Epigenetics and the Developmental Origins of Lung Disease 316
INTRODUCTION 316
HUMAN EVIDENCE FOR THE DEVELOPMENTAL ORIGINS OF LUNG DISEASE 316
LESSONS FROM ANIMAL STUDIES 317
EPIGENETICS IN THE DEVELOPMENTAL ORIGINS OF LUNG DISEASE 318
EPIGENETICS IN THE DEVELOPMENTAL ORIGINS OF LUNG DISEASE 320
FUTURE PERSPECTIVES 321
CONCLUSIONS 321
ACKNOWLEDGMENTS 322
REFERENCES 322
Part II - Environmental Influences on Lung Development and Aging 326
Chapter 17 - Pulmonary Consequences of Preterm Birth 328
INTRODUCTION 328
CAUSES AND ADVERSE OUTCOMES OF PRETERM BIRTH 328
PRETERM BIRTH AS AN ENVIRONMENTAL INFLUENCE ON LUNG DEVELOPMENT 330
CONCLUSION 339
REFERENCES 339
Chapter 18 - The Effects of Neonatal Hyperoxia on Lung Development 346
INTRODUCTION 346
PRETERM BIRTH 346
EFFECTS OF NEONATAL HYPEROXIA ON LUNG DEVELOPMENT 349
MECHANISMS OF ALTERED LUNG DEVELOPMENT 356
INFLUENCE OF HYPEROXIA ON SUSCEPTIBILITY TO INFECTION 358
POTENTIAL THERAPIES 358
CONCLUSIONS 360
ACKNOWLEDGEMENTS 360
REFERENCES 360
Chapter 19 - The Influence of Nutrition on Lung Development before and after Birth 366
INTRODUCTION 366
CAUSES OF RESTRICTED FETAL NUTRITION AND GROWTH 366
ASSOCIATION BETWEEN IUGR, GENES, AND LONG-TERM HEALTH OUTCOMES 369
PROGRAMMING EFFECTS OF GROWTH RESTRICTION ON LUNG FUNCTION AND RESPIRATORY HEALTH: HUMAN DATA 369
EFFECTS OF NUTRIENT RESTRICTION ON THE DEVELOPING LUNG: EXPERIMENTAL FINDINGS 371
ELASTIN 375
COLLAGEN 375
PROTEOGLYCANS 375
EFFECTS OF HYPOXIA ON LUNG DEVELOPMENT 377
ROLE OF MICRONUTRIENTS IN LUNG DEVELOPMENT 378
NUTRITIONAL RESTRICTION AND THE MATURE LUNG 379
CONCLUSIONS 379
REFERENCES 380
Chapter 20 - Genetic Factors Involved in Susceptibility to Lung Disease 386
INTRODUCTION 386
RESEARCH STRATEGIES EMPLOYED TO IDENTIFY CANDIDATE DISEASE SUSCEPTIBILITY GENES 386
GENETIC SUSCEPTIBILTY TO ENVIRONMENTAL STIMULI 390
GENETIC SUSCEPTIBLITY TO ACUTE LUNG INJURY 392
GENETIC SUSCEPTIBILITY TO INFECTION 393
GENETIC SUSCEPTIBILITY TO OCCUPATIONAL LUNG DISEASE 395
CONTRIBUTION OF NUTRITION IN GENETIC SUSCEPTIBLITY TO LUNG DISEASE 396
SUMMARY 397
ACKNOWLEDGMENTS 397
REFERENCES 397
Chapter 21 - Effects of Environmental Tobacco Smoke during Early Life Stages 402
INTRODUCTION 402
CONDITIONS OF EARLY LIFE ETS EXPOSURE 402
CRITICAL LIFE STAGES AND ETS 404
CONCLUSIONS 411
ACKNOWLEDGMENTS 411
REFERENCES 411
Chapter 22 - Nicotine Exposure during Early Development: Effects on the Lung 416
INTRODUCTION 416
UPTAKE OF NICOTINE 416
NICOTINE AND CELL SIGNALING: APOPTOSIS AND LUNG DEVELOPMENT 420
CONCLUSIONS 425
REFERENCES 425
Chapter 23 - Exposure to Allergens during Development 430
INTRODUCTION 430
INFLUENCE OF IN UTERO EXPOSURE TO ALLERGENS ON DEVELOPMENT OF THE ATOPIC PHENOTYPE 431
NEONATAL EXPOSURE TO ALLERGENS 434
EXPOSURE TO ALLERGENS DURING THE JUVENILE PERIOD 435
INTERACTION OF ALLERGENS WITH ENVIRONMENTAL FACTORS DURING DEVELOPMENT 436
SUMMARY 438
REFERENCES 438
Chapter 24 - The Epidemiology of Air Pollution and Childhood Lung Diseases 440
INTRODUCTION 440
AMBIENT AIR POLLUTION 440
AIR POLLUTION AND ASTHMA 441
AIR POLLUTION AND BRONCHITIS, BRONCHIOLITIS 447
AIR POLLUTION AND LUNG DISEASES: THE MODIFYING FACTORS 450
GENE-BY-ENVIRONMENT INTERACTION AND LUNG DISEASES 451
REFERENCES 452
Chapter 25 - Environmental Toxicants and Lung Development in Experimental Models 456
ENVIRONMENTAL TOBACCO SMOKE 456
BIOACTIVATED COMPOUNDS 456
OXIDANT GASES 457
CORTICOSTEROIDS 458
MISCELLANEOUS COMPOUNDS 459
CONCLUSIONS 459
REFERENCES 460
Chapter 26 - Effect of Environment and Aging on the Pulmonary Surfactant System 464
INTRODUCTION 464
EFFECT OF THE INTRAUTERINE ENVIRONMENT ON THE DEVELOPING PULMONARY SURFACTANT SYSTEM 464
EFFECTS OF ENVIRONMENTAL FACTORS ON THE ADULT PULMONARY SURFACTANT SYSTEM 471
NATURAL AGING EFFECTS ON THE PULMONARY SURFACTANT SYSTEM 476
CONCLUSION 478
ACKNOWLEDGMENTS 478
REFERENCES 478
Chapter 27 - Environmental Determinants of Lung Aging 488
INTRODUCTION 488
FACTORS THAT INFLUENCE SUSCEPTIBILITY OF THE AGING LUNG TO DISEASE 489
SUSCEPTIBILITY OF THE AGING LUNG TO ENVIRONMENTAL INJURY 493
NON-NEOPLASTIC DISEASES OF THE LUNG ASSOCIATED WITH AGING 495
CONCLUSIONS AND FUTURE DIRECTIONS 501
ACKNOWLEDGEMENTS 501
REFERENCES 501
Index 510
Color Plates 518
Contributors
Steven H. Abman
The Pediatric Heart Lung Center
Departments of Pediatrics, University of Colorado Denver, Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, CO, USA
Kurt H. Albertine, Departments of Pediatrics, Medicine, and Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA
Diane E. Capen, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Charlestown, MA, USA
Wellington V. Cardoso, Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, NY, USA
Jocelyn Claude, Center for Health and the Environment, University of California – Davis, Davis, CA, USA
Candace M. Crowley, Department of Anatomy, Physiology, & Cell Biology, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
Ernest Cutz
Division of Pathology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
Christopher B. Daniels, Barbara Hardy Institute, University of South Australia, Adelaide, SA, Australia
Reuben B. Dodson
The Pediatric Heart Lung Center
Departments of Surgery, University of Colorado Denver, Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, CO, USA
Nicolle J. Domnik, Department of Biomedical and Molecular Sciences, Physiology Program, Queen’s University, Kingston, ON, Canada
Michelle Fanucchi, School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California – Davis, Davis, CA, USA
Michelle V. Fanucchi, Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
John T. Fisher
Department of Biomedical and Molecular Sciences, Physiology Program, Queen’s University, Kingston, ON, Canada
Department of Medicine, Queen’s University, Kingston, ON, Canada
Csaba Galambos
The Pediatric Heart Lung Center
Departments of Pathology, University of Colorado Denver, Anschutz Medical Campus and Children’s Hospital Colorado, Aurora, CO, USA
Laurel J. Gershwin, University of California – Davis, Davis, Veterinary Medicine (PMI), Davis, CA, USA
Rakesh Ghosh, Division of Environmental Health, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
Francis H.Y. Green, Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
Richard Harding, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
Matt J. Herring, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, California National Primate Research Center, University of California – Davis, Davis, CA, USA
Irva Hertz-Picciotto, Department of Public Health Sciences, University of California – Davis, Davis, CA, USA
Stuart B. Hooper, The Ritchie Centre, MIMR-PHI Institute of Medical Research, and The Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
Connie C.W. Hsia, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
Dallas M. Hyde, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, California National Primate Research Center, University of California – Davis, Davis, CA, USA
Rosemary Jones, Harvard Medical School and Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
Lisa A. Joss-Moore, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
Marcus J. Kitchen, School of Physics, Monash University, Clayton, VIC, Australia
Steven R. Kleeberger, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health Research Triangle Park, NC, USA
Robert H. Lane, Department of Pediatrics, Medical College of Wisconsin, WI, USA
Gert S. Maritz, Department of Physiological Sciences, University of the Western Cape, Bellville, South Africa
Robert De Matteo, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
Zachary McCaw, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health Research Triangle Park, NC, USA
Annie R.A. McDougall, The Ritchie Centre, MIMR-PHI Institute of Medical Research, and The Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
Stephen E. McGowan, Department of Veterans Affairs Research Service, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
Lisa A. Miller, Department of Anatomy, Physiology, & Cell Biology, School of Veterinary Medicine, University of California – Davis, Davis, CA, USA
Munemasa Mori, Columbia Center for Human Development, Pulmonary Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center, New York, NY, USA
Janna L. Morrison, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
Jennifer L. Nichols, Oak Ridge Institute for Science and Education, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
Sandra Orgeig, School of Pharmacy & Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
Kent E. Pinkerton, Department of Pediatrics, School of Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, Center for Health and the Environment, California National Primate Research Center, John Muir Institute of the Environment, University of California – Davis, Davis, CA, USA
Charles Plopper, School of Veterinary Medicine, Department of Anatomy, Physiology and Cell Biology, University of California – Davis, Davis, CA, USA
Lynne Reid, Department of Pathology, Harvard Medical School Children’s Hospital, Boston, MA, USA
Megan O’ Reilly, Department of Pediatrics and Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
Melissa L. Siew, The Ritchie Centre, MIMR-PHI Institute of Medical Research, Monash University, VIC, Australia
Suzette Smiley-Jewell, Center for Health and the Environment, University of California – Davis, Davis, CA, USA
Foula Sozo, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
Lucy C. Sullivan, Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC, Australia
Arjan B. te Pas, Division of Neonatology, Department of Pediatrics, Leiden University Medical Centre, Leiden, The Netherlands
Bernard Thébaud
Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
Division of Neonatology, Department of Pediatrics, Children’s Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, ON, Canada
Kirsten C. Verhein, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences, National Institutes of Health Research Triangle Park, NC, USA
Megan J. Wallace, The Ritchie Centre, MIMR-PHI Institute of Medical Research, and The Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC,...
Erscheint lt. Verlag | 23.10.2014 |
---|---|
Sprache | englisch |
Themenwelt | Medizinische Fachgebiete ► Innere Medizin ► Pneumologie |
Studium ► 1. Studienabschnitt (Vorklinik) ► Physiologie | |
Naturwissenschaften ► Biologie ► Genetik / Molekularbiologie | |
Technik | |
ISBN-10 | 0-12-800288-3 / 0128002883 |
ISBN-13 | 978-0-12-800288-9 / 9780128002889 |
Haben Sie eine Frage zum Produkt? |
Größe: 54,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 23,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich