Für diesen Artikel ist leider kein Bild verfügbar.

Data-Driven Modeling: Using MATLAB(R) in Water Resources and Environmental Engineering (eBook)

eBook Download: PDF
2013 | 2014. Auflage
XIII, 292 Seiten
Springer Netherlands (Verlag)
978-94-007-7506-0 (ISBN)
Systemvoraussetzungen
64,11 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides a systematic account of major concepts and methodologies for data-driven models and uses them to deal with a wide range of problems in the field of water resources and environmental engineering.
"e;Data-Driven Modeling: Using MATLAB(R) in Water Resources and Environmental Engineering"e; provides a systematic account of major concepts and methodologies for data-driven models and presents a unified framework that makes the subject more accessible to and applicable for researchers and practitioners. It integrates important theories and applications of data-driven models and uses them to deal with a wide range of problems in the field of water resources and environmental engineering such as hydrological forecasting, flood analysis, water quality monitoring, regionalizing climatic data, and general function approximation. The book presents the statistical-based models including basic statistical analysis, nonparametric and logistic regression methods, time series analysis and modeling, and support vector machines. It also deals with the analysis and modeling based on artificial intelligence techniques including static and dynamic neural networks, statistical neural networks, fuzzy inference systems, and fuzzy regression. The book also discusses hybrid models as well as multi-model data fusion to wrap up the covered models and techniques. The source files of relatively simple and advanced programs demonstrating how to use the models are presented together with practical advice on how to best apply them. The programs, which have been developed using the MATLAB(R) unified platform, can be found on extras.springer.com. The main audience of this book includes graduate students in water resources engineering, environmental engineering, agricultural engineering, and natural resources engineering. This book may be adapted for use as a senior undergraduate and graduate textbook by focusing on selected topics. Alternatively, it may also be used as a valuable resource book for practicing engineers, consulting engineers, scientists and others involved in water resources and environmental engineering.

Dr. Shahab Araghinejad is Assistant Professor in the Department of Irrigation and Reclamation Engineering, at the College of Agriculture & Natural Resources of the University of Tehran, Iran.

Preface
1. Introduction
1.1. Introduction
1.2. Types of Models
1.3. Spatiotemporal Complexity of a Model
1.4. Model Selection
1.5. General Approach to Develop a Data-Driven Model
1.6. Beyond Developing a Model 
 2.  Basic Statistics
2.1.  Introduction
2.2. Basic Definitions
2.3. Graphical Demonstration of Data
2.4. Probability Distribution Functions
2.5. Frequency Analysis
2.6. Hypothetical Tests
2.7.  Summary of Chapter 2
 3.  Regression Based Models
3.1. Introduction
3.2. Linear Regression
3.3.  Nonlinear Regression
3.4.  Nonparametric Regression
3.5.  Logistic Regression
3.6.  Summary of Chapter 3 
 4.   Time Series Modeling
4.1.  Introduction
4.2.  Time Series Analysis
4.3.  Time Series Models
4.4.  Summary of Chapter 4 
5.  Artificial Neural Networks
5.1. Introduction
5.2. Basic Definitions
5.3. Types of Artificial Neural Networks
5.4. Summary of Chapter 5
 6.  Support Vector Machines
6.1. Introduction
6.2. Support Vector Machines for Classification
6.3.  Support Vector Machines for Regression
 7.  Fuzzy Models
7.1.   Introduction
7.2.  Supportive information
7.3.  Fuzzy Clustering
7.4.  Fuzzy Inference System
7.5.  Adaptive Neuro-Fuzzy Inference System
7.6.  Fuzzy Regression
7.7. Summary of Chapter 7
 8. Hybrid Models and Multi Model Data Fusion
8.1  Introduction
8.2  Characteristics of the Models
8.3  Examples of Hybrid Models 
8.4  Multi-model data fusion
Appendix
Basic Commands in MATLAB
Index   

Erscheint lt. Verlag 26.11.2013
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Hydrologie / Ozeanografie
Technik Umwelttechnik / Biotechnologie
Schlagworte Data-Driven Models • Empirical Models • environmental models • Hydrological Models • Water resources models
ISBN-10 94-007-7506-7 / 9400775067
ISBN-13 978-94-007-7506-0 / 9789400775060
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich